Fibrinogen and Complement Factor H Induce Parkinsonian and Cognitive Impairment-Like Features in Mice

Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, Burn D, Barone P, Pagonabarraga J, Allcock L, Santangelo G, Foltynie T, Janvin C, Larsen JP, Barker RA, Emre M (2010) Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75(12):1062–1069. https://doi.org/10.1212/WNL.0b013e3181f39d0e

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Sagar BKC, Alladi PA (2025) Aging and MPTP sensitivity depend on molecular and ultrastructural signatures of astroglia and microglia in mice substantia Nigra. Cell Mol Neurobiol 45(1):13. https://doi.org/10.1007/s10571-024-01528-8

Article  CAS  PubMed  Google Scholar 

Adair JC, Williamson DJ, Schwartz RL, Heilman KM (1996) Ventral tegmental area injury and frontal lobe disorder. Neurology 46(3):842–843

PubMed  Google Scholar 

Akassoglou K, Yu WM, Akpinar P, Strickland S (2002) Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron 33(6):861–875

Article  CAS  PubMed  Google Scholar 

Alam G, Edler M, Burchfield S, Richardson JR (2017) Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss. Neurotoxicology 60:99–106. https://doi.org/10.1016/j.neuro.2017.03.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159(1):236–245

Article  CAS  PubMed  Google Scholar 

Alladi PA, Mahadevan A, Shankar SK, Raju TR, Muthane U (2010a) Expression of GDNF receptors GFRα1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40(1):43–52

Article  CAS  PubMed  Google Scholar 

Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR (2010b) Ageing enhances α-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 57(5):530–539

Article  CAS  PubMed  Google Scholar 

Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31

CAS  PubMed  Google Scholar 

Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 65(1):19–25. https://doi.org/10.1097/01.jnen.0000196133.74087.cb

Article  CAS  PubMed  Google Scholar 

Baquet ZC, Williams D, Brody J, Smeyne R (2009) A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161(4):1082–1090

Article  CAS  PubMed  Google Scholar 

Bardehle S, Rafalski VA, Akassoglou K (2015) Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front Cell Neurosci 9:354. https://doi.org/10.3389/fncel.2015.00354

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22(14):1856–1864. https://doi.org/10.1101/gad.1674008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhaduri B, Abhilash PL, Alladi PA (2018) Baseline striatal and nigral interneuronal protein levels in two distinct mice strains differ in accordance with their MPTP susceptibility. J Chem Neuroanat 91:46–54. https://doi.org/10.1016/j.jchemneu.2018.04.005

Article  CAS  PubMed  Google Scholar 

Blanchette M, Daneman R (2015) Formation and maintenance of the BBB. Mech Dev 138:8–16

Article  PubMed  Google Scholar 

Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1–2):17–20. https://doi.org/10.1016/0304-3940(95)12192-7

Article  CAS  PubMed  Google Scholar 

Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transmission 110(5):517–536. https://doi.org/10.1007/s00702-002-0808-2

Article  CAS  Google Scholar 

Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291

Article  CAS  PubMed  Google Scholar 

Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA (2003) Parkinson’s disease is associated with hippocampal atrophy. Mov Disord: off J Mov Disord Soc 18(7):784–790. https://doi.org/10.1002/mds.10444

Article  Google Scholar 

Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25(1):134–149. https://doi.org/10.1016/j.nbd.2006.08.021

Article  CAS  PubMed  Google Scholar 

Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S (2010) Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron 66(5):695–709. https://doi.org/10.1016/j.neuron.2010.05.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia Nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain A J Neurol 122(Pt 8):1437–1448. https://doi.org/10.1093/brain/122.8.1437

Article  Google Scholar 

Das SK, Misra AK, Ray BK, Hazra A, Ghosal MK, Chaudhuri A, Raut DK (2010) Epidemiology of Parkinson disease in the city of Kolkata, India: a community-based study. Neurology 75(15):1362–1369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34(1):43–62. https://doi.org/10.1007/s00281-011-0290-8

Article  CAS  PubMed  Google Scholar 

Elabi O, Gaceb A, Carlsson R, Padel T, Soylu-Kucharz R, Cortijo I, Li W, Li JY, Paul G (2021) Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep 11(1):1120. https://doi.org/10.1038/s41598-020-80889-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215(2):244–254. https://doi.org/10.1016/j.bbr.2009.12.036

Article  CAS  PubMed  Google Scholar 

Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59. https://doi.org/10.1016/0166-4328(88)90157-x

Article  CAS  PubMed  Google Scholar 

Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci 991:1–14. https://doi.org/10.1111/j.1749-6632.2003.tb07458.x

Article  CAS  PubMed  Google Scholar 

Foo H, Mak E, Chander RJ, Ng A, Au WL, Sitoh YY, Tan LC, Kandiah N (2016) Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson’s disease. NeuroImage Clin 14:37–42.

Comments (0)

No login
gif