Pyroptosis in Alzheimer’s Disease: Mechanisms and Therapeutic Potential

Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA 113(28):7858–7863. https://doi.org/10.1073/pnas.1607769113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson FL, Biggs KE, Rankin BE, Havrda MC (2023) NLRP3 inflammasome in neurodegenerative disease. Translat Res J Lab Clin Med 252:21–33. https://doi.org/10.1016/j.trsl.2022.08.006

Article  CAS  Google Scholar 

Anton PE, Nagpal P, Moreno J, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL (2024) NF-κB/NLRP3 Translational inhibition by nanoligomer therapy mitigates ethanol and advanced age-related neuroinflammation. bioRxiv : the preprint server for biology. https://doi.org/10.1101/2024.02.26.582114

Bai Y, Liu D, Zhang H, Wang Y, Wang D, Cai H, Wen H, Yuan G, An H, Wang Y, Shi T, Wang Z (2021) N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer’s disease with neuroprotective effects. Bioorg Chem 115:105255. https://doi.org/10.1016/j.bioorg.2021.105255

Article  CAS  PubMed  Google Scholar 

Bakhshi S, Shamsi S (2022) MCC950 in the treatment of NLRP3-mediated inflammatory diseases: latest evidence and therapeutic outcomes. Int Immunopharmacol 106:108595. https://doi.org/10.1016/j.intimp.2022.108595

Article  CAS  PubMed  Google Scholar 

Baraka A, ElGhotny S (2010) Study of the effect of inhibiting galanin in Alzheimer’s disease induced in rats. Eur J Pharmacol 641(2–3):123–127. https://doi.org/10.1016/j.ejphar.2010.05.030

Article  CAS  PubMed  Google Scholar 

Batista AF, Rody T, Forny-Germano L, Cerdeiro S, Bellio M, Ferreira ST, Munoz DP, De Felice FG (2021) Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation 18(1):54. https://doi.org/10.1186/s12974-021-02099-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Better MA (2023) Alzheimer’s disease facts and figures. Alzheimers Dement 19(4):1598–1695. https://doi.org/10.1002/alz.13016

Article  Google Scholar 

Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2013) Progress report on new antiepileptic drugs: a summary of the eleventh eilat conference (EILAT XI). Epilepsy Res 103(1):2–30. https://doi.org/10.1016/j.eplepsyres.2012.10.001

Article  PubMed  Google Scholar 

Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1–2):17–20. https://doi.org/10.1016/0304-3940(95)12192-7

Article  CAS  PubMed  Google Scholar 

Boise LH, Collins CM (2001) Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol 9(2):64–67. https://doi.org/10.1016/s0966-842x(00)01937-5

Article  CAS  PubMed  Google Scholar 

Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T (2021) Salidroside ameliorates Alzheimer’s disease by targeting NLRP3 inflammasome-mediated pyroptosis. Front Aging Neurosci 13:809433. https://doi.org/10.3389/fnagi.2021.809433

Article  CAS  PubMed  Google Scholar 

Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y (2025) Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis: an Int J Program Cell Death 30(1–2):446–465. https://doi.org/10.1007/s10495-024-02041-5

Article  Google Scholar 

Chen JM, Jiang GX, Li QW, Zhou ZM, Cheng Q (2014) Increased serum levels of interleukin-18, -23 and -17 in Chinese patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 38(5–6):321–329. https://doi.org/10.1159/000360606

Article  CAS  PubMed  Google Scholar 

Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020. https://doi.org/10.1038/cr.2016.100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng L, Zhang W (2021) DJ-1 affects oxidative stress and pyroptosis in hippocampal neurons of Alzheimer’s disease mouse model by regulating the Nrf2 pathway. Exp Ther Med 21(6):557. https://doi.org/10.3892/etm.2021.9989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255. https://doi.org/10.1038/nm.3806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114. https://doi.org/10.1016/s0966-842x(00)01936-3

Article  CAS  PubMed  Google Scholar 

D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76. https://doi.org/10.1038/nn.2709

Article  CAS  PubMed  Google Scholar 

Dadkhah M, Sharifi M (2025) The NLRP3 inflammasome: mechanisms of activation, regulation, and role in diseases. Int Rev Immunol 44(2):98–111. https://doi.org/10.1080/08830185.2024.2415688

Article  CAS  PubMed  Google Scholar 

De Luigi A, Fragiacomo C, Lucca U, Quadri P, Tettamanti M, Grazia De Simoni M (2001) Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mech Ageing Dev 122(16):1985–1995. https://doi.org/10.1016/s0047-6374(01)00313-x

Article  PubMed  Google Scholar 

de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metabol: off J Int Soc Cereb Blood Flow Metab 34(3):369–375. https://doi.org/10.1038/jcbfm.2013.227

Article  CAS  Google Scholar 

Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, Mills EL, Robertson AAB, Cooper MA, O’Neill LAJ, Lynch MA (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun 61:306–316. https://doi.org/10.1016/j.bbi.2016.12.014

Article  CAS  PubMed  Google Scholar 

Dubois EA, Rissmann R, Cohen AF (2011) Rilonacept and canakinumab. Br J Clin Pharmacol 71(5):639–641. https://doi.org/10.1111/j.1365-2125.2011.03958.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esmaeili MH, Bahari B, Salari AA (2018) ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Res Bull 137:265–276. https://doi.org/10.1016/j.brainresbull.2018.01.001

Article  CAS  PubMed  Google Scholar 

Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P, Shu Y (2020) Pyroptosis: a new frontier in cancer. Biomed Pharmacother 121:109595. https://doi.org/10.1016/j.biopha.2019.109595

Article  CAS  PubMed  Google Scholar 

Fernández JC, Gamboa P, Jáuregui I, González G, Antépara I (1992) Concomitant sensitization to enoxolone and mafenide in a topical medicament. Contact Dermatitis 27(4):262. https://doi.org/10.1111/j.1600-0536.1992.tb03263.x

Article  PubMed  Google Scholar 

Flores J, Noël A, Foveau B, Lynham J, Lecrux C, LeBlanc AC (2018) Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun 9(1):3916. https://doi.org/10.1038/s41467-018-06449-x

Article  CAS  PubMed 

Comments (0)

No login
gif