Molecular Consequences of a Missense Variant, c.1285G > A, Associated With Syndromic Neurodevelopmental Disorder

Breuel S, Vorm M, Bräuer AU, Owczarek-Lipska M, Neidhardt J (2019) Combining engineered U1 snRNA and antisense oligonucleotides to improve the treatment of a BBS1 splice site mutation. Mol Ther Nucleic Acids 18:123–130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butera A, Nicotera AG, Di Rosa G, Musumeci SA, Vitello GA, Musumeci A, Vinci M, Gloria A, Federico C, Saccone S, Calì F (2022) PHF21A related disorder: Description of a new case. Int J Mol Sci 23(24):16130

Article  PubMed  PubMed Central  Google Scholar 

Caputo A, Schaffer AE (2025) Exploring the connection between RNA splicing and intellectual disability. Curr Opin Genet Dev 91(102322):102322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Chen Y, Wu H, Qiu X, Yu X, Wang R, Zhong J, Peng J (2023) De novo variants in PHF21A cause intellectual developmental disorder with behavioral abnormalities and craniofacial dysmorphism with or without seizures: A case report and literature review. Seizure J British Epilepsy Assoc 111:138–146

Article  Google Scholar 

Doyle, A. (1990). Establishment of lymphoblastoid cell lines. Methods in Molecular Biology (Clifton, N.J.), 5, 43–47.

Engal E, Zhang Z, Geminder O, Jaffe-Herman S, Kay G, Ben-Hur A, Salton M (2024) The spectrum of pre-mRNA splicing in autism. Wiley Interdiscip Rev RNA 15(2):e1838

Article  CAS  PubMed  Google Scholar 

Garay PM, Chen A, Tsukahara T, Rodríguez Díaz JC, Kohen R, Althaus JC, Wallner MA, Giger RJ, Jones KS, Sutton MA, Iwase S (2020) RAI1 regulates activity-dependent nascent transcription and synaptic scaling. Cell Rep 32(6):108002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geierstanger BH, Volkman BF, Kremer W, Wemmer DE (1994) Short peptide fragments derived from HMG-I/Y proteins bind specifically to the minor groove of DNA. Biochemistry 33(17):5347–5355

Article  CAS  PubMed  Google Scholar 

Hakimi M-A, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R (2002) A core–BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci 99(11):7420–7425

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamanaka K, Sugawara Y, Shimoji T, Nordtveit TI, Kato M, Nakashima M, Saitsu H, Suzuki T, Yamakawa K, Aukrust I, Houge G, Mitsuhashi S, Takata A, Iwama K, Alkanaq A, Fujita A, Imagawa E, Mizuguchi T, Miyake N, Matsumoto N (2019) De novo truncating variants in PHF21A cause intellectual disability and craniofacial anomalies. Euro J Human Genet: EJHG 27(3):378–383

Article  CAS  Google Scholar 

Hejla D, Huynh S, Samra S, Richmond PA, Dalmann J, Del Bel KL, Byres L, Lehman A, Turvey SE, Boerkoel CF (2024) Naturally occurring splice variants dissect the functional domains of BHC80 and emphasize the need for RNA analysis. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.63548

Article  PubMed  Google Scholar 

Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM, Clore GM (1997) The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol 4(8):657–665

Article  CAS  PubMed  Google Scholar 

Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, Quesnel-Vallières M, Tapial J, Raj B, O’Hanlon D, Barrios-Rodiles M, Sternberg MJE, Cordes SP, Roth FP, Wrana JL, Geschwind DH, Blencowe BJ (2014) A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159(7):1511–1523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwase S, Januma A, Miyamoto K, Shono N, Honda A, Yanagisawa J, Baba T (2004) Characterization of BHC80 in BRAF–HDAC complex, involved in neuron-specific gene repression. Biochem Biophys Res Commun 322(2):601–608

Article  CAS  PubMed  Google Scholar 

Iwase S, Shono N, Honda A, Nakanishi T, Kashiwabara S-I, Takahashi S, Baba T (2006) A component of BRAF-HDAC complex, BHC80, is required for neonatal survival in mice. FEBS Lett 580(13):3129–3135

Article  CAS  PubMed  Google Scholar 

Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KK-H (2019) Predicting splicing from primary sequence with deep learning. Cell 176(3):535-548.e24

Article  CAS  PubMed  Google Scholar 

Jensen KB, Dredge BK, Stefani G, Zhong R, Buckanovich RJ, Okano HJ, Yang YY, Darnell RB (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25(2):359–371

Article  CAS  PubMed  Google Scholar 

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357–360

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H-G, Kim H-T, Leach NT, Lan F, Ullmann R, Silahtaroglu A, Kurth I, Nowka A, Seong IS, Shen Y, Talkowski ME, Ruderfer D, Lee J-H, Glotzbach C, Ha K, Kjaergaard S, Levin AV, Romeike BF, Kleefstra T, Gusella JF (2012) Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Human Genet 91(1):56–72

Article  CAS  Google Scholar 

Kim HG, Rosenfeld JA, Scott DA, Bénédicte G, Labonne JD, Brown J, McGuire M, Mahida S, Naidu S, Gutierrez J, Lesca G, des Portes V, Bruel Al, Sorlin A, Xia F, Capri Y, Muller E, McKnight D, Torti E, Kim CH (2019) Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism. Mol Autism 10(1):35

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ (2014) Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Design Select PEDS 27(10):325–330

Article  CAS  Google Scholar 

Kondo Y, Oubridge C, van Roon A-MM, Nagai K (2015) Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5’ splice site recognition. Elife. https://doi.org/10.7554/eLife.04986

Article  PubMed  PubMed Central  Google Scholar 

Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X, Gozani O, Cheng X, Shi Y (2007) Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448(7154):718–722

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y, Liu S, Garcia BA, Wu H, Wu F, Steen H, Shi Y (2015) A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Molecular Cell 57(6):957–970

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing? Nature 283(5743):220–224

Article  CAS  PubMed  Google Scholar 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079

Article  PubMed  PubMed Central  Google Scholar 

Li YI, Sanchez-Pulido L, Haerty W, Ponting CP (2015) RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res 25(1):1–13

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Xie N, Chen R, Lee AR, Lovnicki J, Morrison EA, Fazli L, Zhang Q, Musselman CA, Wang Y, Huang J, Gleave ME, Collins C, Dong X (2019) RNA splicing of the BHC80 gene contributes to neuroendocrine prostate cancer progression. Eur Urol 76(2):157–166

Article  CAS  PubMed 

Comments (0)

No login
gif