Machine learning-based bioactivity prediction of porphyrin derivatives: molecular descriptors, clustering, and model evaluation

Akbar, A., Khan, S., Chatterjee, T., & Ghosh, M. (2023). Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 248, Article 112796.

Article  CAS  PubMed  Google Scholar 

Kim, T. E., & Chang, J.-E. (2023). Recent studies in photodynamic therapy for cancer treatment: From basic research to clinical trials. Pharmaceutics, 15, 2257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C., & Golab, J. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61, 250–281.

PubMed  Google Scholar 

Oluwajembola, A. M., Cleanclay, W. D., Onyia, A. F., Chikere, B. N., Zakari, S., Ndifreke, E., & De Campos, O. C. (2024). Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry, 10, Article 101715.

Article  CAS  Google Scholar 

Porphyrin—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/chemical-engineering/porphyrin. Accessed 19 Dec 2024.

Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews, 40, 340–362.

Article  CAS  PubMed  Google Scholar 

Singh, D., Mahadik, A., Surana, S., & Arora, P. (2022). Proteochemometric method for pIC50 prediction of flaviviridae. BioMed Research International, 2022, 1–7.

Article  Google Scholar 

Niazi, S. K., & Mariam, Z. (2023). Recent advances in machine-learning-based chemoinformatics: A comprehensive review. International Journal of Molecular Sciences, 24, 11488.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scalfani, V. F., Patel, V. D., & Fernandez, A. M. (2022). Visualizing chemical space networks with RDKit and NetworkX. Journal of Cheminformatics, 14, 87.

Article  PubMed  PubMed Central  Google Scholar 

Alcázar, J. J., Sánchez, I., Merino, C., Monasterio, B., Sajuria, G., Miranda, D., Díaz, F., & Campodónico, P. R. (2025). A Simple machine learning-based quantitative structure-activity relationship model for predicting pIC50 inhibition values of FLT3 tyrosine kinase. Pharmaceuticals, 18, 96.

Article  PubMed  PubMed Central  Google Scholar 

Enejoh, O. A., Okonkwo, C. H., Nortey, H., Kemiki, O. A., Moses, A., Mbaoji, F. N., Yusuf, A. S., & Awe, O. I. (2025). Machine learning and molecular dynamics simulations predict potential TGR5 agonists for type 2 diabetes treatment. Frontiers in Chemistry, 12, 1503593.

Article  PubMed  PubMed Central  Google Scholar 

Molecular descriptor—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/medicine-and-dentistry/molecular-descriptor. Accessed 6 Feb 2025.

Xavier, D. A., Varghese, E. S., Baby, A., Mathew, D., & Kaabar, M. K. A. (2022). Distance based topological descriptors of zinc porphyrin dendrimer. Journal of Molecular Structure, 1268, Article 133614.

Article  CAS  Google Scholar 

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4, 90–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall, L. H., & Kier, L. B. (1991). Reviews in computational chemistry (pp. 367–422). John Wiley & Sons, Ltd.

Book  Google Scholar 

The molecular connectivity chi ındexes and kappa shape ındexes in structure‐property modeling—Hall—1991—reviews in computational chemistry—Wiley Online Library, https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/9780470125793.ch9. Accessed 26 April 2025.

Malakhov, G., & Pogodin, P. (2024). Dataset of drugs, their molecular scaffolds and medical indications with interactive visualization. Data in Brief, 54, Article 110417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina-Franco, J. L., Sánchez-Cruz, N., López-López, E., & Díaz-Eufracio, B. I. (2022). Progress on open chemoinformatic tools for expanding and exploring the chemical space. Journal of Computer-Aided Molecular Design, 36, 341–354.

Article  CAS  PubMed  Google Scholar 

Ehiro, T. (2024). Descriptor generation from Morgan fingerprint using persistent homology. SAR and QSAR in Environmental Research, 35, 31–51.

Article  CAS  PubMed  Google Scholar 

Banfi, S., Caruso, E., Buccafurni, L., Murano, R., Monti, E., Gariboldi, M., Papa, E., & Gramatica, P. (2006). Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: Synthesis, photodynamic activity, and quantitative structure−activity relationship modeling. Journal of Medicinal Chemistry, 49, 3293–3304.

Article  CAS  PubMed  Google Scholar 

Gao, Y.-H., Zhu, X.-X., Zhu, W., Wu, D., Chen, D.-Y., Yan, Y.-J., Wu, X.-F., O’Shea, D. F., & Chen, Z.-L. (2020). Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy. European Journal of Medicinal Chemistry, 187, Article 111959.

Article  CAS  PubMed  Google Scholar 

Zhu, W., Gao, Y.-H., Liao, P.-Y., Chen, D.-Y., Sun, N.-N., Nguyen Thi, P. A., Yan, Y.-J., Wu, X.-F., & Chen, Z.-L. (2018). Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity. European Journal of Medicinal Chemistry, 160, 146–156.

Article  CAS  PubMed  Google Scholar 

Li, J., Zhang, X., Liu, Y., Yoon, I., Kim, D.-K., Yin, J.-G., Wang, J.-J., & Shim, Y. K. (2015). Synthesis, optical properties and preliminary in vitro photodynamic effect of pyridyl and quinoxalyl substituted chlorins. Bioorganic & Medicinal Chemistry, 23, 1684–1690.

Article  CAS  Google Scholar 

Ngen, E. J., Daniels, T. S., Murthy, R. S., Detty, M. R., & You, Y. (2008). Core-modified porphyrins. Part 6: Effects of lipophilicity and core structures on physicochemical and biological properties in vitro. Bioorganic & Medicinal Chemistry, 16, 3171–3183.

Article  CAS  Google Scholar 

Zhang, X.-J., Liu, M.-H., Luo, Y.-S., Han, G.-Y., Ma, Z.-Q., Huang, F., Wang, Y., Miao, Z.-Y., Zhang, W.-N., Sheng, C.-Q., & Yao, J.-Z. (2021). Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. European Journal of Medicinal Chemistry, 217, Article 113363.

Article  CAS  PubMed  Google Scholar 

Guo, X., Wang, L., Wang, S., Li, Y., Zhang, F., Song, B., & Zhao, W. (2015). Syntheses of new chlorin derivatives containing maleimide functional group and their photodynamic activity evaluation. Bioorganic & Medicinal Chemistry Letters, 25, 4078–4081.

Article  CAS  Google Scholar 

Slomp, A. M., Barreira, S. M. W., Carrenho, L. Z. B., Vandresen, C. C., Zattoni, I. F., Ló, S. M. S., Dallagnol, J. C. C., Ducatti, D. R. B., Orsato, A., Duarte, M. E. R., Noseda, M. D., Otuki, M. F., & Gonçalves, A. G. (2017). Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorganic & Medicinal Chemistry Letters, 27, 156–161.

Article  CAS  Google Scholar 

Wang, Z.-W., Guo, C.-C., Xie, W.-Z., Liu, C.-Z., Xiao, C.-G., & Tan, Z. (2010). Novel phosphoramidates with porphine and nitrogenous drug: One-pot synthesis and orientation to cancer cells. European Journal of Medicinal Chemistry, 45, 890–895.

Article  CAS  PubMed  Google Scholar 

Cancer, https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 20 Dec 2024.

Cabezas, L. M. C., Izbicki, R., & Stern, R. B. (2023). Hierarchical clustering: Visualization, feature importance and model selection. Applied Soft Computing, 141, Article 110303.

Article  Google Scholar 

Roth, J. P., & Bajorath, J. (2024). Machine learning models with distinct Shapley value explanations decouple feature attribution and interpretation for chemical compound predictions. Cell Reports Physical Science, 5, Article 102110.

Article  Google Scholar 

Liu, H., Lv, C., Ding, B., Wang, J., Li, S., & Zhang, Y. (2014). Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncology Letters, 8, 409–413.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Temoporfin—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/temoporfin. Accessed 30 Dec 2024.

Yakavets, I., Millard, M., Zorin, V., Lassalle, H.-P., & Bezdetnaya, L. (2019). Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. Journal of Controlled Release, 304, 268–287.

Article  CAS  PubMed  Google Scholar 

An artificial intelligence accelerated virtual screening platform for drug discovery | Nature Communications, https://www.nature.com/articles/s41467-024-52061-7. Accessed Feb 11, 2025.

Comments (0)

No login
gif