Akbar, A., Khan, S., Chatterjee, T., & Ghosh, M. (2023). Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 248, Article 112796.
Article CAS PubMed Google Scholar
Kim, T. E., & Chang, J.-E. (2023). Recent studies in photodynamic therapy for cancer treatment: From basic research to clinical trials. Pharmaceutics, 15, 2257.
Article CAS PubMed PubMed Central Google Scholar
Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C., & Golab, J. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61, 250–281.
Oluwajembola, A. M., Cleanclay, W. D., Onyia, A. F., Chikere, B. N., Zakari, S., Ndifreke, E., & De Campos, O. C. (2024). Photosensitizers in photodynamic therapy: An advancement in cancer treatment. Results in Chemistry, 10, Article 101715.
Porphyrin—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/chemical-engineering/porphyrin. Accessed 19 Dec 2024.
Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews, 40, 340–362.
Article CAS PubMed Google Scholar
Singh, D., Mahadik, A., Surana, S., & Arora, P. (2022). Proteochemometric method for pIC50 prediction of flaviviridae. BioMed Research International, 2022, 1–7.
Niazi, S. K., & Mariam, Z. (2023). Recent advances in machine-learning-based chemoinformatics: A comprehensive review. International Journal of Molecular Sciences, 24, 11488.
Article CAS PubMed PubMed Central Google Scholar
Scalfani, V. F., Patel, V. D., & Fernandez, A. M. (2022). Visualizing chemical space networks with RDKit and NetworkX. Journal of Cheminformatics, 14, 87.
Article PubMed PubMed Central Google Scholar
Alcázar, J. J., Sánchez, I., Merino, C., Monasterio, B., Sajuria, G., Miranda, D., Díaz, F., & Campodónico, P. R. (2025). A Simple machine learning-based quantitative structure-activity relationship model for predicting pIC50 inhibition values of FLT3 tyrosine kinase. Pharmaceuticals, 18, 96.
Article PubMed PubMed Central Google Scholar
Enejoh, O. A., Okonkwo, C. H., Nortey, H., Kemiki, O. A., Moses, A., Mbaoji, F. N., Yusuf, A. S., & Awe, O. I. (2025). Machine learning and molecular dynamics simulations predict potential TGR5 agonists for type 2 diabetes treatment. Frontiers in Chemistry, 12, 1503593.
Article PubMed PubMed Central Google Scholar
Molecular descriptor—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/medicine-and-dentistry/molecular-descriptor. Accessed 6 Feb 2025.
Xavier, D. A., Varghese, E. S., Baby, A., Mathew, D., & Kaabar, M. K. A. (2022). Distance based topological descriptors of zinc porphyrin dendrimer. Journal of Molecular Structure, 1268, Article 133614.
Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4, 90–98.
Article CAS PubMed PubMed Central Google Scholar
Hall, L. H., & Kier, L. B. (1991). Reviews in computational chemistry (pp. 367–422). John Wiley & Sons, Ltd.
The molecular connectivity chi ındexes and kappa shape ındexes in structure‐property modeling—Hall—1991—reviews in computational chemistry—Wiley Online Library, https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/9780470125793.ch9. Accessed 26 April 2025.
Malakhov, G., & Pogodin, P. (2024). Dataset of drugs, their molecular scaffolds and medical indications with interactive visualization. Data in Brief, 54, Article 110417.
Article CAS PubMed PubMed Central Google Scholar
Medina-Franco, J. L., Sánchez-Cruz, N., López-López, E., & Díaz-Eufracio, B. I. (2022). Progress on open chemoinformatic tools for expanding and exploring the chemical space. Journal of Computer-Aided Molecular Design, 36, 341–354.
Article CAS PubMed Google Scholar
Ehiro, T. (2024). Descriptor generation from Morgan fingerprint using persistent homology. SAR and QSAR in Environmental Research, 35, 31–51.
Article CAS PubMed Google Scholar
Banfi, S., Caruso, E., Buccafurni, L., Murano, R., Monti, E., Gariboldi, M., Papa, E., & Gramatica, P. (2006). Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: Synthesis, photodynamic activity, and quantitative structure−activity relationship modeling. Journal of Medicinal Chemistry, 49, 3293–3304.
Article CAS PubMed Google Scholar
Gao, Y.-H., Zhu, X.-X., Zhu, W., Wu, D., Chen, D.-Y., Yan, Y.-J., Wu, X.-F., O’Shea, D. F., & Chen, Z.-L. (2020). Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy. European Journal of Medicinal Chemistry, 187, Article 111959.
Article CAS PubMed Google Scholar
Zhu, W., Gao, Y.-H., Liao, P.-Y., Chen, D.-Y., Sun, N.-N., Nguyen Thi, P. A., Yan, Y.-J., Wu, X.-F., & Chen, Z.-L. (2018). Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity. European Journal of Medicinal Chemistry, 160, 146–156.
Article CAS PubMed Google Scholar
Li, J., Zhang, X., Liu, Y., Yoon, I., Kim, D.-K., Yin, J.-G., Wang, J.-J., & Shim, Y. K. (2015). Synthesis, optical properties and preliminary in vitro photodynamic effect of pyridyl and quinoxalyl substituted chlorins. Bioorganic & Medicinal Chemistry, 23, 1684–1690.
Ngen, E. J., Daniels, T. S., Murthy, R. S., Detty, M. R., & You, Y. (2008). Core-modified porphyrins. Part 6: Effects of lipophilicity and core structures on physicochemical and biological properties in vitro. Bioorganic & Medicinal Chemistry, 16, 3171–3183.
Zhang, X.-J., Liu, M.-H., Luo, Y.-S., Han, G.-Y., Ma, Z.-Q., Huang, F., Wang, Y., Miao, Z.-Y., Zhang, W.-N., Sheng, C.-Q., & Yao, J.-Z. (2021). Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. European Journal of Medicinal Chemistry, 217, Article 113363.
Article CAS PubMed Google Scholar
Guo, X., Wang, L., Wang, S., Li, Y., Zhang, F., Song, B., & Zhao, W. (2015). Syntheses of new chlorin derivatives containing maleimide functional group and their photodynamic activity evaluation. Bioorganic & Medicinal Chemistry Letters, 25, 4078–4081.
Slomp, A. M., Barreira, S. M. W., Carrenho, L. Z. B., Vandresen, C. C., Zattoni, I. F., Ló, S. M. S., Dallagnol, J. C. C., Ducatti, D. R. B., Orsato, A., Duarte, M. E. R., Noseda, M. D., Otuki, M. F., & Gonçalves, A. G. (2017). Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorganic & Medicinal Chemistry Letters, 27, 156–161.
Wang, Z.-W., Guo, C.-C., Xie, W.-Z., Liu, C.-Z., Xiao, C.-G., & Tan, Z. (2010). Novel phosphoramidates with porphine and nitrogenous drug: One-pot synthesis and orientation to cancer cells. European Journal of Medicinal Chemistry, 45, 890–895.
Article CAS PubMed Google Scholar
Cancer, https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 20 Dec 2024.
Cabezas, L. M. C., Izbicki, R., & Stern, R. B. (2023). Hierarchical clustering: Visualization, feature importance and model selection. Applied Soft Computing, 141, Article 110303.
Roth, J. P., & Bajorath, J. (2024). Machine learning models with distinct Shapley value explanations decouple feature attribution and interpretation for chemical compound predictions. Cell Reports Physical Science, 5, Article 102110.
Liu, H., Lv, C., Ding, B., Wang, J., Li, S., & Zhang, Y. (2014). Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncology Letters, 8, 409–413.
Article CAS PubMed PubMed Central Google Scholar
Temoporfin—an overview | ScienceDirect topics, https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/temoporfin. Accessed 30 Dec 2024.
Yakavets, I., Millard, M., Zorin, V., Lassalle, H.-P., & Bezdetnaya, L. (2019). Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. Journal of Controlled Release, 304, 268–287.
Article CAS PubMed Google Scholar
An artificial intelligence accelerated virtual screening platform for drug discovery | Nature Communications, https://www.nature.com/articles/s41467-024-52061-7. Accessed Feb 11, 2025.
Comments (0)