Oral nicotinamide mononucleotide (NMN) increases tissue NAD content in mice but neither NMN nor Polypodium protect against UVR-induced skin cancer

Miller, D. L., & Weinstock, M. A. (1994). Nonmelanoma skin cancer in the United States: Incidence. Journal of the American Academy of Dermatology, 30(5 Pt 1), 774–778. https://doi.org/10.1016/s0190-9622(08)81509-5

Article  CAS  PubMed  Google Scholar 

Sieborg, J., Haedersdal, M., Lei, U., Sølvsten, H., Olesen, A. B., Vinding, G. R., Lamberg, A. L., Egeberg, A., & Wenande, E. (2024). Incidence and geographic differences in keratinocyte carcinoma and Bowen’s disease in office-based dermatological practice between 2013 and 2022: A nationwide Danish registry-based study. JEADV Clinical Practice, 3(4), 1164–1174. https://doi.org/10.1002/jvc2.478

Article  Google Scholar 

Ramos, J., Villa, J., Ruiz, A., Armstrong, R., & Matta, J. (2004). UV dose determines key characteristics of nonmelanoma skin cancer. Cancer Epidemiology, Biomarkers & Prevention, 13(12), 2006–2011. https://doi.org/10.1158/1055-9965.2006.13.12

Article  CAS  Google Scholar 

Jans, J., Schul, W., Sert, Y.-G., Rijksen, Y., Rebel, H., Eker, A. P. M., Nakajima, S., van Steeg, H., de Gruijl, F. R., Yasui, A., Hoeijmakers, J. H. J., & van der Horst, G. T. J. (2005). Powerful skin cancer protection by a CPD-photolyase transgene. Current Biology, 15(2), 105–115. https://doi.org/10.1016/j.cub.2005.01.001

Article  CAS  PubMed  Google Scholar 

Brash, D. E. (2015). UV signature mutations. Photochemistry and Photobiology, 91(1), 15–26. https://doi.org/10.1111/php.12377

Article  CAS  PubMed  Google Scholar 

Ahmad, J., Cooke, M. S., Hussieni, A., Evans, M. D., Patel, K., Burd, R. M., Bleiker, T. O., Hutchinson, P. E., & Lunec, J. (1999). Urinary thymine dimers and 8-oxo-2′-deoxyguanosine in psoriasis. FEBS Letters, 460(3), 549–553. https://doi.org/10.1016/S0014-5793(99)01402-7

Article  CAS  PubMed  Google Scholar 

Lerche, C. M., Philipsen, P. A., Hermansson, S., Heydenreich, J., & Wulf, H. C. (2022). Quantification of urinary thymidine dimers in volunteers after ultraviolet radiation using a new UPLC-MS/MS-based method. Anticancer Research, 42(10), 5069–5076. https://doi.org/10.2173/anticanres.16015

Article  CAS  PubMed  Google Scholar 

Lerche, C. M., Frederiksen, N. J. S., Thorsteinsson, I. S., Køster, B., Nybo, L., Flouris, A. D., Heydenreich, J., Philipsen, P. A., Hædersdal, M., Wulf, H. C., & Granborg, J. R. (2024). Urinary thymidine dimer excretion reflects personal ultraviolet radiation exposure levels. Photochemical & Photobiological Sciences, 23(5), 919–930. https://doi.org/10.1007/s43630-024-00563-0

Article  CAS  Google Scholar 

Cao, H., Brehm, M., Hynan, L., & Goff, H. W. (2019). Wrinkles, brown spots, and cancer: Relationship between appearance- and health-based knowledge and sunscreen use. Journal of Cosmetic Dermatology, 18(2), 558–562. https://doi.org/10.1111/jocd.12712

Article  PubMed  Google Scholar 

Roberts, C. A., Goldstein, E. K., Goldstein, B. G., Jarman, K. L., Paci, K., & Goldstein, A. O. (2021). Men’s attitudes and behaviors about skincare and sunscreen use behaviors. Journal of Drugs in Dermatology, 20(1), 88–93. https://doi.org/10.3849/JDD.5470

Article  PubMed  Google Scholar 

Pihl, C., Togsverd-Bo, K., Andersen, F., Haedersdal, M., Bjerring, P., & Lerche, C. M. (2021). Keratinocyte carcinoma and photoprevention: The protective actions of repurposed pharmaceuticals, phytochemicals and vitamins. Cancers. https://doi.org/10.3390/cancers13153684

Article  PubMed  PubMed Central  Google Scholar 

Pihl, C., Andersen, F., Bjerring, P., Haedersdal, M., & Lerche, C. M. (2024). Efficacy of combinational treatment versus nicotinamide monotherapy in the prevention of ultraviolet radiation-induced skin cancer. Dermatology. https://doi.org/10.1159/000538445

Article  PubMed  Google Scholar 

Pihl, C., Bendtsen, K. M. S., Jensen, H. E., Andersen, F., Bjerring, P., Haedersdal, M., & Lerche, C. M. (2023). Oral phytochemicals as photoprotectants in UVR exposed hairless mice: A study of hesperidin methyl chalcone, phloroglucinol, and syringic acid. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2023.112760

Article  PubMed  Google Scholar 

Chen, A. C., Martin, A. J., Choy, B., Fernández-Peñas, P., Dalziell, R. A., McKenzie, C. A., Scolyer, R. A., Dhillon, H. M., Vardy, J. L., Kricker, A., St George, G., Chinniah, N., Halliday, G. M., & Damian, D. L. (2015). A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. New England Journal of Medicine, 373(17), 1618–1626. https://doi.org/10.1056/NEJMoa1506197

Article  CAS  PubMed  Google Scholar 

Surjana, D., Halliday, G. M., Martin, A. J., Moloney, F. J., & Damian, D. L. (2012). Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. Journal of Investigative Dermatology, 132(5), 1497–1500. https://doi.org/10.1038/jid.2011.459

Article  CAS  PubMed  Google Scholar 

Allen, N. C., Martin, A. J., Snaidr, V. A., Eggins, R., Chong, A. H., Fernandéz-Peñas, P., Gin, D., Sidhu, S., Paddon, V. L., Banney, L. A., Lim, A., Upjohn, E., Schaider, H., Ganhewa, A. D., Nguyen, J., McKenzie, C. A., Prakash, S., McLean, C., Lochhead, A., … Damian, D. L. (2023). Nicotinamide for skin-cancer chemoprevention in transplant recipients. The New England journal of medicine, 388(9), 804–812. https://doi.org/10.1056/NEJMoa2203086

Article  CAS  PubMed  Google Scholar 

Zhang, H., George-Washburn, E. A., Hashemi, K. B., Cho, E., Walker, J., Weinstock, M. A., Bostom, A., Robinson-Bostom, L., & Gohh, R. (2023). Oral nicotinamide for actinic keratosis prevention in kidney transplant recipients: A pilot double-blind, randomized, placebo-controlled trial. Transplantation Proceedings, 55(9), 2079–2084. https://doi.org/10.1016/j.transproceed.2023.06.016

Article  CAS  PubMed  Google Scholar 

Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., & Auwerx, J. (2012). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet induced obesity. Cell metabolism, 15(6), 838–847. https://doi.org/10.1016/j.cmet.2012.04.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilk, A., Hayat, F., Cunningham, R., Li, J., Garavaglia, S., Zamani, L., Ferraris, D. M., Sykora, P., Andrews, J., Clark, J., Davis, A., Chaloin, L., Rizzi, M., Migaud, M., & Sobol, R. W. (2020). Extracellular NAD+ enhances PARP-dependent DNA repair capacity independently of CD73 activity. Scientific Reports, 10(1), 651. https://doi.org/10.1038/s41598-020-57506-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., & Imai, S. (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metabolism, 24(6), 795–806. https://doi.org/10.1016/j.cmet.2016.09.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

North, B. J., Rosenberg, M. A., Jeganathan, K. B., Hafner, A. V., Michan, S., Dai, J., Baker, D. J., Cen, Y., Wu, L. E., Sauve, A. A., van Deursen, J. M., Rosenzweig, A., & Sinclair, D. A. (2014). SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. The EMBO Journal, 33(13), 1438–1453. https://doi.org/10.15252/embj.201386907

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verdin, E. (2015). NAD+ in aging, metabolism, and neurodegeneration. Science, 350(6265), 1208–1213. https://doi.org/10.1126/science.aac4854

Article  CAS  PubMed  Google Scholar 

Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693

Article  CAS  PubMed  Google Scholar 

Revollo, J. R., Grimm, A. A., & Imai, S. (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. The Journal of Biological Chemistry, 279(49), 50754–50763. https://doi.org/10.1074/jbc.M408388200

Article  CAS  PubMed  Google Scholar 

Nacarelli, T., Lau, L., Fukumoto, T., Zundell, J., Fatkhutdinov, N., Wu, S., Aird, K. M., Iwasaki, O., Kossenkov, A. V., Schultz, D., Noma, K., Baur, J. A., Schug, Z., Tang, H.-Y., Speicher, D. W., David, G., & Zhang, R. (2019). NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 21(3), 397–407. https://doi.org/10.1038/s41556-019-0287-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, T.-C. (2022). Updated functional roles of NAMPT in carcinogenesis and therapeutic niches. Cancers, 14(9), 2059. https://doi.org/10.3390/cancers14092059

Comments (0)

No login
gif