Exploring catalase inhibition as an adjuvant to antimicrobial photodynamic therapy against

Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). Bacterial resistance to antimicrobial agents. Antibiotics. https://doi.org/10.3390/antibiotics10050593

Article  PubMed  PubMed Central  Google Scholar 

Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens. https://doi.org/10.1128/9781555819286.ch17

Article  Google Scholar 

MacGowan, A., & Macnaughton, E. (2017). Antibiotic resistance. Medicine (Baltimore), 45, 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006

Article  Google Scholar 

Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10, 369–378. https://doi.org/10.1016/j.jiph.2016.08.007

Article  PubMed  Google Scholar 

Kim, H. K., Missiakas, D., & Schneewind, O. (2014). Mouse models for infectious diseases caused by Staphylococcus aureus. Journal of Immunological Methods, 410, 88–99. https://doi.org/10.1016/j.jim.2014.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowy, F. D., Fant, J., Higgins, L. L., Ogawa, S. K., & Hatcher, V. B. (1988). Staphylococcus aureus-human endothelial cell interactions. Journal of Ultrastructure and Molecular Structure Research, 98, 137–146.

Article  CAS  PubMed  Google Scholar 

Linz, M. S., Mattappallil, A., Finkel, D., & Parker, D. (2023). Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics. https://doi.org/10.3390/antibiotics12030557

Article  PubMed  PubMed Central  Google Scholar 

Hasmukharay, K., Ngoi, S. T., Saedon, N. I., Tan, K. M., Khor, H. M., Chin, A. V., Tan, M. P., Kamarulzaman, A., Binti Idris, N., Niek, W. K., Teh, C. S. J., Binti Kamaruzzaman, S. B., & Ponnampalavanar, S. S. L. S. (2023). Evaluation of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: Epidemiology, clinical characteristics, and outcomes in the older patients in a tertiary teaching hospital in Malaysia. BMC Infectious Diseases., 23, 241. https://doi.org/10.1186/s12879-023-08206-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lam, J. C., & Stokes, W. (2023). The Golden Grapes of Wrath – Staphylococcus aureus bacteremia: A clinical review. American Journal of Medicine, 136, 19–26. https://doi.org/10.1016/j.amjmed.2022.09.017

Article  PubMed  Google Scholar 

Kouijzer, I. J. E., Fowler, V. G., & ten Oever, J. (2023). Redefining Staphylococcus aureus bacteremia: A structured approach guiding diagnostic and therapeutic management. Journal of Infection, 86, 9–13. https://doi.org/10.1016/j.jinf.2022.10.042

Article  CAS  PubMed  Google Scholar 

Nguyen, T.C., Marini, J.C., Guillory, B., Valladolid-Brown, C., Martinez-Vargas, M., Subramanyam, D., Cohen, D., Cirlos, S.C., Lam, F., Stoll, B., Didelija, I.C., Vonderohe, C., Orellana, R., Saini, A., Pradhan, S., Bashir, D., Desai, M.S., Flores, S., Virk, M., Tcharmtchi, H., Navaei, A., Kaplan, S., Lamberth, L., Hulten, K.G., Scull, B.P., Allen, C.E., Akcan-Arikan, A., Vijayan, K.V., Cruz, M.A. (2023). Pediatric swine model of methicillin-resistant Staphylococcus aureus sepsis-induced coagulopathy, disseminated microvascular thrombosis, and organ injuries. Critical Care Explorations, 5. https://journals.lww.com/ccejournal/fulltext/2023/06000/pediatric_swine_model_of_methicillin_resistant.1.aspx.

Sun, C., Tan, D., Yu, J., Liu, J., Shen, D., Li, S., Zhao, S., Zhang, L., Li, H., Cai, K., Xu, S., & Huang, L. (2023). Predictive models for sepsis in children with Staphylococcus aureus bloodstream infections: A retrospective cohort study. BMC Pediatrics, 23, 496. https://doi.org/10.1186/s12887-023-04317-2

Article  PubMed  PubMed Central  Google Scholar 

Frazee, B. W., Singh, A., Labreche, M., Imani, P., Ha, K., Furszyfer Del Rio, J., Kreys, E., & Mccabe, R. (2023). Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa community acquired pneumonia: Prevalence and locally derived risk factors in a single hospital system. Journal of the American College of Emergency Physicians Open, 4, Article e13061. https://doi.org/10.1002/emp2.13061

Article  PubMed  PubMed Central  Google Scholar 

Wang, K., Hu, Y., Duan, Z., Fu, H., Hu, X., Zhao, Y., Wen, R., Li, L., & Xie, F. (2023). Severe community-acquired pneumonia caused by methicillin-sensitive Staphylococcus aureus: Successfully treated with contezolid—A case report and literature review. Infection and Drug Resistance, 16, 3233–3242. https://doi.org/10.2147/IDR.S406799

Article  PubMed  PubMed Central  Google Scholar 

Bergenman, O., Nilson, B., & Rasmussen, M. (2024). Risk of infective endocarditis and complicated infection in Staphylococcus aureus bacteremia—A retrospective cohort study on the role of bacteriuria. European Journal of Clinical Microbiology and Infectious Diseases, 43, 1419–1426. https://doi.org/10.1007/s10096-024-04850-7

Article  PubMed  Google Scholar 

Diego-Yagüe, I., Ramos-Martínez, A., Muñoz, P., Martínez-Sellés, M., Machado, M., de Alarcón, A., Miró, J. M., Rodríguez-Gacía, R., Gutierrez-Díez, J. F., Hidalgo-Tenorio, C., Loeches-Yagüe, B., & López-Azor, J. C. (2024). Clinical features and prognosis of prosthetic valve endocarditis due to Staphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases. https://doi.org/10.1007/s10096-024-04848-1

Article  PubMed  Google Scholar 

Nappi, F., & Avtaar Singh, S. S. (2023). Host-bacterium interaction mechanisms in Staphylococcus aureus endocarditis: a systematic review. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms241311068

Article  PubMed  PubMed Central  Google Scholar 

Li, P., Yin, R., Cheng, J., & Lin, J. (2023). Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms241411680

Article  PubMed  PubMed Central  Google Scholar 

Weber, C., Hohmann, C., Lindner, O., Wahlers, T., & Jung, N. (2023). Patients with artificial heart valves. Deutsches Ärzteblatt International, 120, 692–702. https://doi.org/10.3238/arztebl.m2023.0104

Article  PubMed  PubMed Central  Google Scholar 

Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus aureus biofilm: A complex developmental organism. Molecular Microbiology, 104, 365–376. https://doi.org/10.1111/mmi.13634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nunes, I. P. F., Crugeira, P. J. L., Sampaio, F. J. P., de Oliveira, S. C. P. S., Azevedo, J. M., Santos, C. L. O., Soares, L. G. P., Samuel, I. D. W., Persheyev, S., de Ameida, P. F., & Pinheiro, A. L. B. (2023). Evaluation of dual application of photodynamic therapy—PDT in Candida albicans. Photodiagnosis and Photodynamic Therapy, 42, Article 103327. https://doi.org/10.1016/j.pdpdt.2023.103327

Article  CAS  PubMed  Google Scholar 

Schirmer, R. H., Adler, H., Pickhardt, M., & Mandelkow, E. (2011). Lest we forget you—methylene blue …. Neurobiology of Aging, 32(2325), e7-2325.e16. https://doi.org/10.1016/j.neurobiolaging.2010.12.012

Article  CAS  Google Scholar 

Saeed, K., Khan, I., & Park, S.-Y. (2015). TiO2/amidoxime-modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium. Desalination and Water Treatment, 54, 3146–3151.

Article  CAS  Google Scholar 

Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23, 363–398.

CAS  PubMed  Google Scholar 

Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: The story so far. European Journal of Cancer, 41, 1955–1968. https://doi.org/10.1016/j.ejca.2005.05.009

Article  CAS  PubMed  Google Scholar 

Bansal, S. S., Goel, M., Aqil, F., Vadhanam, M. V., & Gupta, R. C. (2011). Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research, 4, 1158–1171. https://doi.org/10.1158/1940-6207.CAPR-10-0006

Article  CAS  PubMed  Google Scholar 

Kasim, N. A., Whitehouse, M., Ramachandran, C., Bermejo, M., Lennernäs, H., Hussain, A. S., Junginger, H. E., Stavchansky, S. A., Midha, K. K., & Shah, V. P. (2004). Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Molecular Pharmaceutics, 1, 85–96.

Article  CAS  PubMed  Google Scholar 

Geralde, M.C., Corrêa, T.Q., Bagnato, V.S., Kurachi, C., de Souza, C.W.O. (2013). Study on the incubation time of curcumin in photodynamic therapy, Adv. Sch. Mod. Trends Biophotonics Diagnosis Treat. Cancer Microb. Control.

Freitas, M. A. A., Pereira, A. H. C., Pinto, J. G., Casas, A., & Ferreira-Strixino, J. (2019). Bacterial viability after antimicrobial photodynamic therapy with curcumin on multiresistant Staphylococcus aureus. Future Microbiology, 14, 739–748. https://doi.org/10.2217/fmb-2019-0042

Article  CAS  PubMed  Google Scholar 

Dias, L. D., Blanco, K. C., Mfouo-Tynga, I. S., Inada, N. M., & Bagnato, V. S. (2020). Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 45, Article 100384.

Comments (0)

No login
gif