Li, J. G., Zhang, D., Guo, Z. Y., Chen, Z. H., Jiang, X., Larson, J. M., et al. (2024). Light-driven C-H activation mediated by 2D transition metal dichalcogenides. Nature Communications. https://doi.org/10.1038/s41467-024-49783-z. PubMed PMID: WOS:001261751100017.
Article PubMed PubMed Central Google Scholar
Li, Y. L., Gao, Y. X., Deng, Z. J., Cao, Y. T., Wang, T., Wang, Y., et al. (2023). Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts. Nature Communications. https://doi.org/10.1038/s41467-023-40359-x. PubMed PMID: WOS:001040308300001.
Article PubMed PubMed Central Google Scholar
Czyz, M. L., Horngren, T. H., Kondopoulos, A. J., Franov, L. J., Forni, J. A., Pham, L., et al. (2024). Photocatalytic generation of alkyl carbanions from aryl alkenes. Nature Catalysis. https://doi.org/10.1038/s41929-024-01237-x. PubMedPMID:WOS:001339321900001.
Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angew Chem-Int Edit, 49(9), 1540–1573. https://doi.org/10.1002/anie.200903924. PubMedPMID:WOS:000275234800004.
Nejdl, L., Petera, L., Sponer, J., Zemánková, K., Pavelicová, K., Knízek, A., et al. (2022). Quantum dots in peroxidase-like chemistry and formamide-based hot spring synthesis of nucleobases. Astrobiology, 22(5), 541–551. https://doi.org/10.1089/ast.2021.0099. PubMedPMID:WOS:000776448100001.
Article CAS PubMed Google Scholar
Nejdl, L., Zemankova, K., Havlikova, M., Buresova, M., Hynek, D., Xhaxhiu, K., et al. (2020). UV-induced nanoparticles-formation, properties and their potential role in origin of life. Nanomaterials. https://doi.org/10.3390/nano10081529. PMID: WOS:000564810900001.
Article PubMed PubMed Central Google Scholar
Fialova, T., Vaculovicova, M., Stefanik, M., Mravec, F., Buresova, M., Vodova, M., et al. (2024). Light-triggered reactions in a new “light” of nanoparticles engineering. Journal of Photochemistry and Photobiology a-Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115667. PubMed PMID: WOS:001232262400001.
Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The Plant-microorganism context. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.597642. PMID: WOS:000603030600001.
Article PubMed PubMed Central Google Scholar
Llorens, L., Neugart, S., Vandenbussche, F., & Castagna, A. (2020). Editorial: ultraviolet radiation: friend or foe for plants? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00541. PubMed PMID: WOS:000535555000001.
Article PubMed PubMed Central Google Scholar
Keaney, D., Lucey, B., & Finn, K. (2024). A Review of environmental challenges facing martian colonisation and the potential for terrestrial microbes to transform a toxic extraterrestrial environment. Challenges., 15(1), 5. https://doi.org/10.3390/challe15010005
Pace, N. J., & Weerapana, E. (2014). Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules, 4(2), 419–434. https://doi.org/10.3390/biom4020419. PubMedPMID:WOS:000215154100004.
Article CAS PubMed PubMed Central Google Scholar
Dmytryk, A., & Chojnacka, K. (2018). Algae as fertilizers, biostimulants, and regulators of plant growth. In K. Chojnacka, P. P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae biomass: characteristics and applications: Towards algae-based products (pp. 115–122). Springer International Publishing.
Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., et al. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020
Article CAS PubMed PubMed Central Google Scholar
Roque, J., Brito, Â., Rocha, M., Pissarra, J., Nunes, T., Bessa, M., et al. (2023). Isolation and characterization of soil cyanobacteria and microalgae and evaluation of their potential as plant biostimulants. Plant and Soil, 493(1), 115–136. https://doi.org/10.1007/s11104-023-06217-x
Baweja, P., Kumar, S., & Kumar, G. (2019). Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In B. Giri, R. Prasad, Q.-S. Wu, & A. Varma (Eds.), Biofertilizers for sustainable agriculture and environment (pp. 353–370). Springer International Publishing.
Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing., 1(4), 411–431. https://doi.org/10.1007/s43393-021-00038-8
Blaise, C., Férard, J.-F., & Vasseur, P. (2018). Microplate toxicity tests with microalgae: A review. Microscale testing in aquatic toxicology (pp. 269–88). OAPEN Library.
Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703. https://doi.org/10.1002/etc.5620080807
Gardia-Parège, C., Kim Tiam, S., Budzinski, H., Mazzella, N., Devier, M.-H., & Morin, S. (2022). Pesticide toxicity towards microalgae increases with environmental mixture complexity. Environmental Science and Pollution Research, 29(20), 29368–29381. https://doi.org/10.1007/s11356-021-17811-w
Article CAS PubMed Google Scholar
Elpiniki, S., Alexandra, S., Georgios, C., & Nicholaos, D. (2019). Maize as energy crop. In H. Akbar (Ed.), Maize (p. 1). IntechOpen.
Trout, T. J., & DeJonge, K. C. (2017). Water productivity of maize in the US high plains. Irrigation Science, 35(3), 251–266. https://doi.org/10.1007/s00271-017-0540-1
Liu, X., Zhao, J., Feng, J., Lv, J., Liu, Q., Nan, F., et al. (2022). A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain tolerant to high concentration of calcium chloride. Journal of Eukaryotic Microbiology., 69(1), Article e12872. https://doi.org/10.1111/jeu.12872
Article CAS PubMed Google Scholar
Rathod, J. P., Prakash, G., Vira, C., & Lali, A. M. (2016). Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions. Preparative Biochemistry & Biotechnology., 46(8), 803–809. https://doi.org/10.1080/10826068.2015.1135465
Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors., 21(3), 742.
Article CAS PubMed PubMed Central Google Scholar
Lichtenthaler, H., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592.
Koşar, M., Dorman, H. J. D., & Hiltunen, R. (2005). Effect of an acid treatment on the phytochemical and antioxidant charateristics of extracts from selected Lamiaceae species. Food Chemistry, 91, 525–533. https://doi.org/10.1016/j.foodchem.2004.06.029
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999. PubMed PMID: 942051.
Article CAS PubMed Google Scholar
Foley, S., & Enescu, M. (2007). A Raman spectroscopy and theoretical study of zinc-cysteine complexation. Vibrational Spectroscopy., 44(2), 256–265. https://doi.org/10.1016/j.vibspec.2006.12.004. PubMedPMID:WOS:000248604400008.
Brandt, E. G., Hellgren, M., Brinck, T., Bergman, T., & Edholm, O. (2009). Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics, 11(6), 975–983. https://doi.org/10.1039/b815482a.PubMedPMID:WOS:000262850600011
Article CAS PubMed Google Scholar
Nejdl, L., Zitka, J., Mravec, F., Milosavljevic, V., Zitka, O., Kopel, P., et al. (2017). Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchimica Acta, 184(5), 1489–1497. https://doi.org/10.1007/s00604-017-2149-8. PubMedPMID:WOS:000399900600025.
Croce, A. C. (2021). Light and Autofluorescence Multitasking Features in Living Organisms. Photochem, 1(2), 67–124. https://doi.org/10.3390/photochem1020007. PubMedPMID:WOS:001268588500001.
Nicolaï, M. P. J., Bok, M. J., Abalos, J., D’Alba, L., Shawkey, M. D., & Goldenberg, J. (2024). The function and consequences of fluorescence in tetrapods. Proceedings of the National Academy of Sciences., 121(24), Article e2318189121.
Comments (0)