Enhanced UV-C resistance through light-activated zinc-cysteine complex formation

Li, J. G., Zhang, D., Guo, Z. Y., Chen, Z. H., Jiang, X., Larson, J. M., et al. (2024). Light-driven C-H activation mediated by 2D transition metal dichalcogenides. Nature Communications. https://doi.org/10.1038/s41467-024-49783-z. PubMed PMID: WOS:001261751100017.

Article  PubMed  PubMed Central  Google Scholar 

Li, Y. L., Gao, Y. X., Deng, Z. J., Cao, Y. T., Wang, T., Wang, Y., et al. (2023). Visible-light-driven reversible shuttle vicinal dihalogenation using lead halide perovskite quantum dot catalysts. Nature Communications. https://doi.org/10.1038/s41467-023-40359-x. PubMed PMID: WOS:001040308300001.

Article  PubMed  PubMed Central  Google Scholar 

Czyz, M. L., Horngren, T. H., Kondopoulos, A. J., Franov, L. J., Forni, J. A., Pham, L., et al. (2024). Photocatalytic generation of alkyl carbanions from aryl alkenes. Nature Catalysis. https://doi.org/10.1038/s41929-024-01237-x. PubMedPMID:WOS:001339321900001.

Article  Google Scholar 

Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angew Chem-Int Edit, 49(9), 1540–1573. https://doi.org/10.1002/anie.200903924. PubMedPMID:WOS:000275234800004.

Article  CAS  Google Scholar 

Nejdl, L., Petera, L., Sponer, J., Zemánková, K., Pavelicová, K., Knízek, A., et al. (2022). Quantum dots in peroxidase-like chemistry and formamide-based hot spring synthesis of nucleobases. Astrobiology, 22(5), 541–551. https://doi.org/10.1089/ast.2021.0099. PubMedPMID:WOS:000776448100001.

Article  CAS  PubMed  Google Scholar 

Nejdl, L., Zemankova, K., Havlikova, M., Buresova, M., Hynek, D., Xhaxhiu, K., et al. (2020). UV-induced nanoparticles-formation, properties and their potential role in origin of life. Nanomaterials. https://doi.org/10.3390/nano10081529. PMID: WOS:000564810900001.

Article  PubMed  PubMed Central  Google Scholar 

Fialova, T., Vaculovicova, M., Stefanik, M., Mravec, F., Buresova, M., Vodova, M., et al. (2024). Light-triggered reactions in a new “light” of nanoparticles engineering. Journal of Photochemistry and Photobiology a-Chemistry. https://doi.org/10.1016/j.jphotochem.2024.115667. PubMed PMID: WOS:001232262400001.

Article  Google Scholar 

Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The Plant-microorganism context. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.597642. PMID: WOS:000603030600001.

Article  PubMed  PubMed Central  Google Scholar 

Llorens, L., Neugart, S., Vandenbussche, F., & Castagna, A. (2020). Editorial: ultraviolet radiation: friend or foe for plants? Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00541. PubMed PMID: WOS:000535555000001.

Article  PubMed  PubMed Central  Google Scholar 

Keaney, D., Lucey, B., & Finn, K. (2024). A Review of environmental challenges facing martian colonisation and the potential for terrestrial microbes to transform a toxic extraterrestrial environment. Challenges., 15(1), 5. https://doi.org/10.3390/challe15010005

Article  Google Scholar 

Pace, N. J., & Weerapana, E. (2014). Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules, 4(2), 419–434. https://doi.org/10.3390/biom4020419. PubMedPMID:WOS:000215154100004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dmytryk, A., & Chojnacka, K. (2018). Algae as fertilizers, biostimulants, and regulators of plant growth. In K. Chojnacka, P. P. Wieczorek, G. Schroeder, & I. Michalak (Eds.), Algae biomass: characteristics and applications: Towards algae-based products (pp. 115–122). Springer International Publishing.

Chapter  Google Scholar 

Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., et al. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roque, J., Brito, Â., Rocha, M., Pissarra, J., Nunes, T., Bessa, M., et al. (2023). Isolation and characterization of soil cyanobacteria and microalgae and evaluation of their potential as plant biostimulants. Plant and Soil, 493(1), 115–136. https://doi.org/10.1007/s11104-023-06217-x

Article  CAS  Google Scholar 

Baweja, P., Kumar, S., & Kumar, G. (2019). Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In B. Giri, R. Prasad, Q.-S. Wu, & A. Varma (Eds.), Biofertilizers for sustainable agriculture and environment (pp. 353–370). Springer International Publishing.

Chapter  Google Scholar 

Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing., 1(4), 411–431. https://doi.org/10.1007/s43393-021-00038-8

Article  CAS  Google Scholar 

Blaise, C., Férard, J.-F., & Vasseur, P. (2018). Microplate toxicity tests with microalgae: A review. Microscale testing in aquatic toxicology (pp. 269–88). OAPEN Library.

Chapter  Google Scholar 

Nyholm, N., & Källqvist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environmental Toxicology and Chemistry, 8(8), 689–703. https://doi.org/10.1002/etc.5620080807

Article  CAS  Google Scholar 

Gardia-Parège, C., Kim Tiam, S., Budzinski, H., Mazzella, N., Devier, M.-H., & Morin, S. (2022). Pesticide toxicity towards microalgae increases with environmental mixture complexity. Environmental Science and Pollution Research, 29(20), 29368–29381. https://doi.org/10.1007/s11356-021-17811-w

Article  CAS  PubMed  Google Scholar 

Elpiniki, S., Alexandra, S., Georgios, C., & Nicholaos, D. (2019). Maize as energy crop. In H. Akbar (Ed.), Maize (p. 1). IntechOpen.

Google Scholar 

Trout, T. J., & DeJonge, K. C. (2017). Water productivity of maize in the US high plains. Irrigation Science, 35(3), 251–266. https://doi.org/10.1007/s00271-017-0540-1

Article  Google Scholar 

Liu, X., Zhao, J., Feng, J., Lv, J., Liu, Q., Nan, F., et al. (2022). A Parachlorella kessleri (Trebouxiophyceae, Chlorophyta) strain tolerant to high concentration of calcium chloride. Journal of Eukaryotic Microbiology., 69(1), Article e12872. https://doi.org/10.1111/jeu.12872

Article  CAS  PubMed  Google Scholar 

Rathod, J. P., Prakash, G., Vira, C., & Lali, A. M. (2016). Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions. Preparative Biochemistry & Biotechnology., 46(8), 803–809. https://doi.org/10.1080/10826068.2015.1135465

Article  CAS  Google Scholar 

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., & Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors., 21(3), 742.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenthaler, H., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592.

Article  Google Scholar 

Koşar, M., Dorman, H. J. D., & Hiltunen, R. (2005). Effect of an acid treatment on the phytochemical and antioxidant charateristics of extracts from selected Lamiaceae species. Food Chemistry, 91, 525–533. https://doi.org/10.1016/j.foodchem.2004.06.029

Article  CAS  Google Scholar 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999. PubMed PMID: 942051.

Article  CAS  PubMed  Google Scholar 

Foley, S., & Enescu, M. (2007). A Raman spectroscopy and theoretical study of zinc-cysteine complexation. Vibrational Spectroscopy., 44(2), 256–265. https://doi.org/10.1016/j.vibspec.2006.12.004. PubMedPMID:WOS:000248604400008.

Article  CAS  Google Scholar 

Brandt, E. G., Hellgren, M., Brinck, T., Bergman, T., & Edholm, O. (2009). Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics, 11(6), 975–983. https://doi.org/10.1039/b815482a.PubMedPMID:WOS:000262850600011

Article  CAS  PubMed  Google Scholar 

Nejdl, L., Zitka, J., Mravec, F., Milosavljevic, V., Zitka, O., Kopel, P., et al. (2017). Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale. Microchimica Acta, 184(5), 1489–1497. https://doi.org/10.1007/s00604-017-2149-8. PubMedPMID:WOS:000399900600025.

Article  CAS  Google Scholar 

Croce, A. C. (2021). Light and Autofluorescence Multitasking Features in Living Organisms. Photochem, 1(2), 67–124. https://doi.org/10.3390/photochem1020007. PubMedPMID:WOS:001268588500001.

Article  Google Scholar 

Nicolaï, M. P. J., Bok, M. J., Abalos, J., D’Alba, L., Shawkey, M. D., & Goldenberg, J. (2024). The function and consequences of fluorescence in tetrapods. Proceedings of the National Academy of Sciences., 121(24), Article e2318189121.

Comments (0)

No login
gif