Uauy, R., Olivares, M., & Gonzalez, M. (1998). Essentiality of copper in humans. The American Journal of Clinical Nutrition, 67(5), 952S-959S.
Article CAS PubMed Google Scholar
Danks, D. (1988). Copper deficiency in humans. Annual review of nutrition, 8.
Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57(9), 399–411.
Myint, Z. W., Oo, T. H., Thein, K. Z., Tun, A. M., & Saeed, H. (2018). Copper deficiency anemia. Annals of hematology, 97, 1527–1534.
Article CAS PubMed Google Scholar
Brewer, G. J. (2012). Copper toxicity in Alzheimer’s disease: Cognitive loss from ingestion of inorganic copper. Journal of Trace Elements in Medicine and Biology, 26(2–3), 89–92.
Article CAS PubMed Google Scholar
Schilsky, M. L. (1996). Wilson disease: Genetic basis of copper toxicity and natural history. Seminars in liver disease. Thieme Medical Publishers Inc, 1996, 83–95.
Uriu-Adams, J. Y., & Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular aspects of medicine, 26(4–5), 268–298.
Article CAS PubMed Google Scholar
Isangedighi, I. A., & David, G. S. (2019). Heavy metals contamination in fish: Effects on human health. Journal of Aquatic Science and Marine Biology, 2(4), 7–12.
Nor, Y. M. (1987). Ecotoxicity of copper to aquatic biota: A review. Environmental research, 43(1), 274–282.
Article CAS PubMed Google Scholar
Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chemical reviews, 106(6), 1995–2044.
Article CAS PubMed Google Scholar
Soylak, M., Narin, I., & Dogan, M. (1997). Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column. Analytical Letters, 30(15), 2801–2810.
Becker, J. S., Matusch, A., Depboylu, C., Dobrowolska, J., & Zoriy, M. (2007). Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (Slugs− Genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry. Analytical chemistry, 79(16), 6074–6080.
Article CAS PubMed Google Scholar
Ambrose, J., Barradas, R., & Shoesmith, D. (1973). Investigations of copper in aqueous alkaline solutions by cyclic voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 47(1), 47–64.
Kumar, G., Singh, I., Goel, R., Paul, K., & Luxami, V. (2021). Dual-channel ratiometric recognition of Al3+ and F− ions through an ESIPT-ESICT signalling mechanism. Spectrochimica Acta Part A, 247, Article 119112.
Kaur, B., Singh, G., Sharma, V., & Singh, I. (2023). Sulphur containing heterocyclic compounds as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry-Anti-Cancer Agents), 23(8), 869–881.
Bhat, A. A., Kaur, G., Tandon, N., Tandon, R., & Singh, I. (2024). Current advancements in synthesis, anticancer activity, and structure–activity relationship (SAR) of coumarin derivatives. Inorganic Chemistry Communications, 112605.
He, X., Zhang, J., Liu, X., Dong, L., Li, D., Qiu, H., & Yin, S. (2014). A novel BODIPY-based colorimetric and fluorometric dual-mode chemosensor for Hg2+ and Cu2+. Sensors and Actuators B, 192, 29–35.
Kaur, G., Singh, I., Tandon, R., & Tandon, N. (2023). Recent Advancements in Coumarin Based Colorimetric and Fluorescent Chemosensors. Inorganic Chemistry Communications, 111480.
Kaur, G., Singh, I., Tandon, N., Tandon, R., & Bhat, A. A. (2023). 1, 8-naphthalimide-based chemosensors: a promising strategy for detection of metal ions in environmental and biological systems. ChemistrySelect, 8(44), Article e202301661.
Kaur, G., Rani, R., Raina, J., & Singh, I. (2024). Recent Advancements and Future Prospects in NBD-Based Fluorescent Chemosensors: Design Strategy, Sensing Mechanism, and Biological Applications. Critical Reviews in Analytical Chemistry, 1–41.
Zhao, Y., Zhang, X.-B., Han, Z.-X., Qiao, L., Li, C.-Y., Jian, L.-X., Shen, G.-L., & Yu, R. (2009). Highly sensitive and selective colorimetric and off− on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Analytical chemistry, 81(16), 7022–7030.
Article CAS PubMed Google Scholar
Raina, J., Kaur, G., & Singh, I. (2024). Recent progress in nanomaterial-based aptamers as biosensors for point of care detection of Hg2+ ions and its environmental applications. Talanta, 277, Article 126372.
Article CAS PubMed Google Scholar
Singh, I., Kumar, G., Palta, A., & Paul, K. (2023). Naphthalimide-benzimidazole conjugate towards “Turn-on” recoginition of Hg2+ in pure aqueous medium. Inorganica Chimica Acta, 557, Article 121684.
Kaur, G., Kumar, G., & Singh, I. (2025). A novel naphthalimide-derived “turn-off” chemosensor for the detection of Cu2+ F-and CN-ions. Journal of Molecular Structure, 1319, Article 139252.
Kaur, G., Palta, A., Kumar, G., Paul, K., & Singh, I. (2025). Fluorescent “turn-on” naphthalimide conjugate for the detection of CN− ion with potential applications in real water samples and molecular logic gate. Microchemical Journal, 112845.
Kaur, G., Singh, I., Singh, G., & Kumar, D. (2025). A “naked-eye” Naphthalimide based chemosensor for CN− ion detection: investigating its application as test-strips, smartphone analysis & molecular logic gate and its TD-DFT study. Inorganica Chimica Acta, 581, Article 122615.
Jain, N., & Kaur, N. (2022). A comprehensive compendium of literature of 1, 8-Naphthalimide based chemosensors from 2017 to 2021. Coordination Chemistry Reviews, 459, Article 214454.
Frisch, M., & Clemente, F. MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino and G. Zhe, Gaussian, 9.
Khan, I. M., Naaz, F., Shakya, S., Islam, M., Khan, A., & Ahmad, M. (2024). Photocatalytic activity, DFT/TD-DFT, and spectrophotometric studies of a synthesized charge transfer complex of p-toluidine with 1, 2, 4, 5-benzenetetracarboxylic acid in various polar solvents. Journal of Molecular Liquids, 399, Article 124412.
Burns, L. A., Mayagoitia, A. V., Sumpter, B. G., & Sherrill, C. D. (2011). Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of chemical physics, 134(8).
Zhang, I. Y., Wu, J., & Xu, X. (2010). Extending the reliability and applicability of B3LYP. Chemical Communications, 46(18), 3057–3070.
Article CAS PubMed Google Scholar
Negi, O., Srishti, K., Gusain, A., & Hota, P. K. (2023). Coumarin based hydrazone as an antioxidant and sensor for cupric ion: spectroscopic and computational studies. ChemistrySelect, 8(48), Article e202303312.
Kumar, J., Bhattacharyya, P. K., & Das, D. K. (2015). New duel fluorescent “on–off” and colorimetric sensor for Copper (II): Copper (II) binds through N coordination and pi cation interaction to sensor. Spectrochimica Acta Part A, 138, 99–104.
Kumar, S., Lal, B., Tittal, R. K., Singh, G., Singh, J., Sharma, R., & Sabane, J. K. (2023). A selective chemosensor via click chemistry for Cu 2+ and Hg 2+ ions in organic media. Sensors & Diagnostics, 2(5), 1267–1276.
Niranjan, R., Prasad, G. D., Arockiaraj, M., Rajeshkumar, V., & Mahadevegowda, S. H. (2025). Novel coumarin-Schiff base derived electronically distinct fluorescent probes: synthesis and comparative investigations of their unique selective sensing properties with Cu2+ and Cu+ ions. Journal of Molecular Structure, 1321, Article 139929.
Comments (0)