Bitziou, E., et al. (2014). In situ optimization of pH for parts-per-billion electrochemical detection of dissolved hydrogen sulfide using boron-doped diamond flow electrodes. Analytical Chemistry, 86(21), 10834–10840.
Article CAS PubMed Google Scholar
Xu, T., et al. (2016). Electrochemical hydrogen sulfide biosensors. The Analyst, 141, 1185–1195. https://doi.org/10.1039/C5AN02208H
Article CAS PubMed Google Scholar
Bineesh, K. V., Kim, M., Lee, G. H., Selvaraj, M., Hyun, K., & Park, D. W. (2012). Production of elemental sulfur and ammonium thiosulfate by the oxidation of H₂S containing water vapor and ammonia over V/Zr-PILC catalysts. Industrial and Engineering Chemistry, 18, 1845–1850. https://doi.org/10.1016/j.jiec.2012.04.014
Gruhlke, M. C. H., & Slusarenko, A. J. (2012). The biology of reactive sulfur species (RSS). Plant Physiology and Biochemistry, 59, 98–107. https://doi.org/10.1016/j.plaphy.2012.03.016
Article CAS PubMed Google Scholar
Sheng, Y., et al. (2008). Emission of volatile organic sulfur compounds from a heavily polluted river in Guangzhou, South China. Environmental Monitoring and Assessment, 143, 121–130. https://doi.org/10.1007/s10661-007-9962-1
Article CAS PubMed Google Scholar
Hettmann, K., Wenzel, T., Marks, M., & Markl, G. (2012). The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. American Mineralogist, 97, 1653–1661. https://doi.org/10.2138/am.2012.4031
Yin, H. B., Fan, C. X., Ding, S. M., Zhang, L., Liu, X. B., & Li, B. (2008). Distribution characteristic and correlation relationship of reactive sulfur and heavy metals in sediments of Meiliang Bay and Wuli Lake of Taihu Lake. Bulletin of Environmental Contamination and Toxicology, 29, 1791–1796. https://doi.org/10.1007/s00128-008-9387-8
Rumbeiha, W., Whitley, E., Anantharam, P., Kim, D., & Kanthasamy, A. (2016). Acute hydrogen sulfide–induced neuropathology and neurological sequelae: Challenges for translational neuroprotective research. Annals of the New York Academy of Sciences, 1378, 5–16. https://doi.org/10.1111/nyas.13148
Article CAS PubMed PubMed Central Google Scholar
Paul, B. D., & Snyder, S. H. (2012). H₂S signaling through protein sulfhydration and beyond. Nature Reviews Molecular Cell Biology, 13, 499–507. https://doi.org/10.1038/nrm3391
Article CAS PubMed Google Scholar
Kolluru, G. K., Shen, X., Bir, S. C., & Kevil, C. G. (2013). Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide, 35, 5–20. https://doi.org/10.1016/j.niox.2013.07.002
Article CAS PubMed PubMed Central Google Scholar
Ranjana, M., & Sunil, D. (2022). Naphthalimide derivatives as fluorescent probes for imaging endogenous gasotransmitters. Chemico-Biological Interactions, 363, Article 110022. https://doi.org/10.1016/j.cbi.2022.110022
Article CAS PubMed Google Scholar
Fiorucci, S., et al. (2005). The third gas: H₂S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 42, 539–548. https://doi.org/10.1002/hep.20817
Article CAS PubMed Google Scholar
Lee, M., Schwab, C., Yu, S., McGeer, E., & McGeer, P. L. (2009). Astrocytes produce the anti-inflammatory and neuroprotective agent hydrogen sulfide. Neurobiology of Aging, 30, 1523–1534. https://doi.org/10.1016/j.neurobiolaging.2009.06.001
Article CAS PubMed Google Scholar
Ubuka, T. (2002). Assay methods and biological roles of labile sulfur in animal tissues. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 781, 227–249. https://doi.org/10.1016/S1570-0232(02)00623-2
Article CAS PubMed Google Scholar
Hu, X., & Mutus, B. (2013). Electrochemical detection of sulfide. Reviews in Analytical Chemistry. https://doi.org/10.1515/revac-2013-0008
Zhang, X., Ju, H., & Wang, J. (2008). Electrochemical sensors, biosensors, and their biomedical applications (pp. 583–593). Academic Press.
Shen, X., Pattillo, C. B., Pardue, S., Bir, S. C., Wang, R., & Kevil, C. G. (2011). Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radical Biology and Medicine, 50, 1021–1031. https://doi.org/10.1016/j.freeradbiomed.2011.01.025
Article CAS PubMed Google Scholar
Furne, J., Saeed, A., & Levitt, M. D. (2008). Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295, R1479–R1485. https://doi.org/10.1152/ajpregu.90566.2008
Article CAS PubMed Google Scholar
Wang, J., Long, L., Xie, D., & Zhan, Y. (2013). Highly selective fluorescence turn-on sensor for hydrogen sulfide and imaging in living cells. Journal of Luminescence, 139, 40–46. https://doi.org/10.1016/j.jlumin.2013.02.038
Song, F., Yang, C., Shao, X., Du, L., Zhu, J., & Kan, C. (2019). A reversible ‘turn-off-on’ fluorescent probe for real-time visualization of mercury(II) in environmental samples and its biological applications. Dyes and Pigments, 165, 444–450. https://doi.org/10.1016/j.dyepig.2019.02.054
Liu, X. L., Du, X. J., Dai, C. G., & Song, Q. H. (2014). Ratiometric two-photon fluorescent probes for mitochondrial hydrogen sulfide in living cells. Journal of Organic Chemistry, 79, 9481–9489. https://doi.org/10.1021/jo5014838
Article CAS PubMed Google Scholar
Savizi, I. S. P., Kariminia, H. R., Ghadiri, M., & Roosta Azad, R. (2012). Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen-printed electrode in an enzyme inhibition-based biosensor. Biosensors and Bioelectronics, 35, 297–301. https://doi.org/10.1016/j.bios.2012.03.004
Article CAS PubMed Google Scholar
Chang, J., Wei, G., Chen, T., & Zen, J. (2013). Highly stable polymeric ionic liquid modified electrode to immobilize ferricyanide for electroanalysis of sulfide. Electroanalysis, 25, 845–849. https://doi.org/10.1002/elan.201200431
Luo, W., Xue, H., Ma, J., Wang, L., & Liu, W. (2019). Molecular engineering of a colorimetric two-photon fluorescent probe for visualizing H₂S level in lysosome and tumor. Analytica Chimica Acta, 1077, 273–280. https://doi.org/10.1016/j.aca.2019.05.057
Article CAS PubMed Google Scholar
Liu, T., Xu, Z., Spring, D. R., & Cui, J. (2013). A lysosome-targetable fluorescent probe for imaging hydrogen sulfide in living cells. Organic Letters, 15, 2310–2313. https://doi.org/10.1021/ol400973v
Article CAS PubMed Google Scholar
Gao, C., Liu, X., Chen, W., Wang, F., & Jiang, J. H. (2018). A naphthalene-based fluorescent probe for ratiometric imaging of lysosomal hydrogen sulfide in living cells. Methods and Applications in Fluorescence, 7, Article 014002. https://doi.org/10.1088/2050-6120/aae9c4
Article CAS PubMed Google Scholar
Li, H., Jintao, F., Wang, Z., Jia, Y., Li, P., Yao, C., et al. (2022). A highly selective fluorescent probe for the detection of nitroreductase based on a naphthalimide scaffold. Journal of Fluorescence, 32(5), 1825–1832. https://doi.org/10.1007/s10895-022-02974-7
Article CAS PubMed Google Scholar
Wang, S., Chen, X., Yu, S., Liu, Z., Fu, J., & Zeng, X. (2024). Naphthalimide-based fluorescent probe for Hg2⁺ detection and imaging in living cells and zebrafish. Luminescence. https://doi.org/10.1002/bio.4699
Zhou, J., et al. (2016). A lysosome-targeting fluorescence off-on probe for imaging of nitroreductase and hypoxia in live cells. Chemistry – An Asian Journal, 11(11), 2719–2724.
Comments (0)