A versatile electrochemical, colorimetric, and visible light excitable turn-on fluorescent probe for stress-induced HS detection

Bitziou, E., et al. (2014). In situ optimization of pH for parts-per-billion electrochemical detection of dissolved hydrogen sulfide using boron-doped diamond flow electrodes. Analytical Chemistry, 86(21), 10834–10840.

Article  CAS  PubMed  Google Scholar 

Xu, T., et al. (2016). Electrochemical hydrogen sulfide biosensors. The Analyst, 141, 1185–1195. https://doi.org/10.1039/C5AN02208H

Article  CAS  PubMed  Google Scholar 

Bineesh, K. V., Kim, M., Lee, G. H., Selvaraj, M., Hyun, K., & Park, D. W. (2012). Production of elemental sulfur and ammonium thiosulfate by the oxidation of H₂S containing water vapor and ammonia over V/Zr-PILC catalysts. Industrial and Engineering Chemistry, 18, 1845–1850. https://doi.org/10.1016/j.jiec.2012.04.014

Article  CAS  Google Scholar 

Gruhlke, M. C. H., & Slusarenko, A. J. (2012). The biology of reactive sulfur species (RSS). Plant Physiology and Biochemistry, 59, 98–107. https://doi.org/10.1016/j.plaphy.2012.03.016

Article  CAS  PubMed  Google Scholar 

Sheng, Y., et al. (2008). Emission of volatile organic sulfur compounds from a heavily polluted river in Guangzhou, South China. Environmental Monitoring and Assessment, 143, 121–130. https://doi.org/10.1007/s10661-007-9962-1

Article  CAS  PubMed  Google Scholar 

Hettmann, K., Wenzel, T., Marks, M., & Markl, G. (2012). The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. American Mineralogist, 97, 1653–1661. https://doi.org/10.2138/am.2012.4031

Article  CAS  Google Scholar 

Yin, H. B., Fan, C. X., Ding, S. M., Zhang, L., Liu, X. B., & Li, B. (2008). Distribution characteristic and correlation relationship of reactive sulfur and heavy metals in sediments of Meiliang Bay and Wuli Lake of Taihu Lake. Bulletin of Environmental Contamination and Toxicology, 29, 1791–1796. https://doi.org/10.1007/s00128-008-9387-8

Article  CAS  Google Scholar 

Rumbeiha, W., Whitley, E., Anantharam, P., Kim, D., & Kanthasamy, A. (2016). Acute hydrogen sulfide–induced neuropathology and neurological sequelae: Challenges for translational neuroprotective research. Annals of the New York Academy of Sciences, 1378, 5–16. https://doi.org/10.1111/nyas.13148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul, B. D., & Snyder, S. H. (2012). H₂S signaling through protein sulfhydration and beyond. Nature Reviews Molecular Cell Biology, 13, 499–507. https://doi.org/10.1038/nrm3391

Article  CAS  PubMed  Google Scholar 

Kolluru, G. K., Shen, X., Bir, S. C., & Kevil, C. G. (2013). Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide, 35, 5–20. https://doi.org/10.1016/j.niox.2013.07.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ranjana, M., & Sunil, D. (2022). Naphthalimide derivatives as fluorescent probes for imaging endogenous gasotransmitters. Chemico-Biological Interactions, 363, Article 110022. https://doi.org/10.1016/j.cbi.2022.110022

Article  CAS  PubMed  Google Scholar 

Fiorucci, S., et al. (2005). The third gas: H₂S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology, 42, 539–548. https://doi.org/10.1002/hep.20817

Article  CAS  PubMed  Google Scholar 

Lee, M., Schwab, C., Yu, S., McGeer, E., & McGeer, P. L. (2009). Astrocytes produce the anti-inflammatory and neuroprotective agent hydrogen sulfide. Neurobiology of Aging, 30, 1523–1534. https://doi.org/10.1016/j.neurobiolaging.2009.06.001

Article  CAS  PubMed  Google Scholar 

Ubuka, T. (2002). Assay methods and biological roles of labile sulfur in animal tissues. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 781, 227–249. https://doi.org/10.1016/S1570-0232(02)00623-2

Article  CAS  PubMed  Google Scholar 

Hu, X., & Mutus, B. (2013). Electrochemical detection of sulfide. Reviews in Analytical Chemistry. https://doi.org/10.1515/revac-2013-0008

Article  Google Scholar 

Zhang, X., Ju, H., & Wang, J. (2008). Electrochemical sensors, biosensors, and their biomedical applications (pp. 583–593). Academic Press.

Google Scholar 

Shen, X., Pattillo, C. B., Pardue, S., Bir, S. C., Wang, R., & Kevil, C. G. (2011). Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radical Biology and Medicine, 50, 1021–1031. https://doi.org/10.1016/j.freeradbiomed.2011.01.025

Article  CAS  PubMed  Google Scholar 

Furne, J., Saeed, A., & Levitt, M. D. (2008). Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295, R1479–R1485. https://doi.org/10.1152/ajpregu.90566.2008

Article  CAS  PubMed  Google Scholar 

Wang, J., Long, L., Xie, D., & Zhan, Y. (2013). Highly selective fluorescence turn-on sensor for hydrogen sulfide and imaging in living cells. Journal of Luminescence, 139, 40–46. https://doi.org/10.1016/j.jlumin.2013.02.038

Article  CAS  Google Scholar 

Song, F., Yang, C., Shao, X., Du, L., Zhu, J., & Kan, C. (2019). A reversible ‘turn-off-on’ fluorescent probe for real-time visualization of mercury(II) in environmental samples and its biological applications. Dyes and Pigments, 165, 444–450. https://doi.org/10.1016/j.dyepig.2019.02.054

Article  CAS  Google Scholar 

Liu, X. L., Du, X. J., Dai, C. G., & Song, Q. H. (2014). Ratiometric two-photon fluorescent probes for mitochondrial hydrogen sulfide in living cells. Journal of Organic Chemistry, 79, 9481–9489. https://doi.org/10.1021/jo5014838

Article  CAS  PubMed  Google Scholar 

Savizi, I. S. P., Kariminia, H. R., Ghadiri, M., & Roosta Azad, R. (2012). Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen-printed electrode in an enzyme inhibition-based biosensor. Biosensors and Bioelectronics, 35, 297–301. https://doi.org/10.1016/j.bios.2012.03.004

Article  CAS  PubMed  Google Scholar 

Chang, J., Wei, G., Chen, T., & Zen, J. (2013). Highly stable polymeric ionic liquid modified electrode to immobilize ferricyanide for electroanalysis of sulfide. Electroanalysis, 25, 845–849. https://doi.org/10.1002/elan.201200431

Article  CAS  Google Scholar 

Luo, W., Xue, H., Ma, J., Wang, L., & Liu, W. (2019). Molecular engineering of a colorimetric two-photon fluorescent probe for visualizing H₂S level in lysosome and tumor. Analytica Chimica Acta, 1077, 273–280. https://doi.org/10.1016/j.aca.2019.05.057

Article  CAS  PubMed  Google Scholar 

Liu, T., Xu, Z., Spring, D. R., & Cui, J. (2013). A lysosome-targetable fluorescent probe for imaging hydrogen sulfide in living cells. Organic Letters, 15, 2310–2313. https://doi.org/10.1021/ol400973v

Article  CAS  PubMed  Google Scholar 

Gao, C., Liu, X., Chen, W., Wang, F., & Jiang, J. H. (2018). A naphthalene-based fluorescent probe for ratiometric imaging of lysosomal hydrogen sulfide in living cells. Methods and Applications in Fluorescence, 7, Article 014002. https://doi.org/10.1088/2050-6120/aae9c4

Article  CAS  PubMed  Google Scholar 

Li, H., Jintao, F., Wang, Z., Jia, Y., Li, P., Yao, C., et al. (2022). A highly selective fluorescent probe for the detection of nitroreductase based on a naphthalimide scaffold. Journal of Fluorescence, 32(5), 1825–1832. https://doi.org/10.1007/s10895-022-02974-7

Article  CAS  PubMed  Google Scholar 

Wang, S., Chen, X., Yu, S., Liu, Z., Fu, J., & Zeng, X. (2024). Naphthalimide-based fluorescent probe for Hg2⁺ detection and imaging in living cells and zebrafish. Luminescence. https://doi.org/10.1002/bio.4699

Article  PubMed  Google Scholar 

Zhou, J., et al. (2016). A lysosome-targeting fluorescence off-on probe for imaging of nitroreductase and hypoxia in live cells. Chemistry – An Asian Journal, 11(11), 2719–2724.

Article  CAS  PubMed 

Comments (0)

No login
gif