Investigation of singlet oxygen quantum yield of protonated water-soluble glycosylated porphyrin photosensitizer for photodynamic therapy

Martel, D. C. D., Georges, G., & BrayFerlayClifford, F. J. G. M. (2020). Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. The Lancet Global Health, 8(2), e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7

Article  PubMed  Google Scholar 

Alvarez, N., & Sevilla, A. (2024). Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences, 25(2), 1023. https://doi.org/10.3390/ijms25021023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fenn, S. L., Miao, T., Scherrer, R. M., & Oldinski, R. A. (2016). Dual-cross-linked methacrylated alginate sub-microspheres for intracellular chemotherapeutic delivery. ACS Applied Materials & Interfaces, 8(28), 17775–17783. https://doi.org/10.1021/acsami.6b03245

Article  CAS  Google Scholar 

Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., & Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience Trends, 9(1), 16–34. https://doi.org/10.5582/bst.2015.01019

Article  CAS  PubMed  Google Scholar 

Hampton, J. A., Goldblatt, P. J., & Selman, S. H. (1994). Photodynamic therapy: A new modality for the treatment of cancer. Annals of Clinical and Laboratory Science, 24(3), 203–210.

CAS  PubMed  Google Scholar 

Gunaydin, G., Gedik, M. E., & Ayan, S. (2021). Photodynamic therapy for the treatment and diagnosis of cancer–a review of the current clinical status. Frontiers in Chemistry, 9, Article 686303. https://doi.org/10.3389/fchem.2021.686303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dąbrowski, J. M. (2017). Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation. Advances in Inorganic Chemistry, 70, 343–394. https://doi.org/10.1016/bs.adioch.2017.03.002

Article  CAS  Google Scholar 

Feng, X., Shi, Y., Xie, L., Zhang, K., Wang, X., Liu, Q., & Wang, P. (2018). Synthesis, characterization, and biological evaluation of a porphyrin-based photosensitizer and its isomer for effective photodynamic therapy against breast cancer. Journal of Medicinal Chemistry, 61(16), 7189–7201. https://doi.org/10.1021/acs.jmedchem.8b00547

Article  CAS  PubMed  Google Scholar 

Dewaele, M., Martinet, M., Rubio, N., Verfaillie de Witte, P. A., Piette, J., & Agostinis, P. (2011). Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. Journal of Cellular and Molecular Medicine, 15(6), 1402–1414. https://doi.org/10.1111/j.1582-4934.2010.01118.x

Article  CAS  PubMed  Google Scholar 

Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jori, G. (1992). Far-red-absorbing photosensitizers: Their use in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology A: Chemistry, 62(3), 371–378. https://doi.org/10.1016/1010-6030(92)85065-3

Article  CAS  Google Scholar 

Singh, S., Aggarwal, A., Bhupathiraju, N. D., Arianna, G., Tiwari, K., & Drain, C. M. (2015). Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chemical Reviews, 115(18), 10261–10306. https://doi.org/10.1021/acs.chemrev.5b00244

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kou, J., Dou, D., & Yang, L. (2017). Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8(46), 81591. https://doi.org/10.18632/oncotarget.20189

Article  PubMed  PubMed Central  Google Scholar 

Iengo, E., Zangrando, E., & Alessio, E. (2006). Synthetic strategies and structural aspects of metal-mediated multiporphyrin assemblies. Accounts of Chemical Research, 39(11), 841–851. https://doi.org/10.1021/ar040240+

Article  CAS  PubMed  Google Scholar 

Corwin, A. H., Chivvis, A. B., Poor, R. W., Whitten, D. G., & Baker, E. W. (1968). Porphyrin studies XXXVII. The interpretation of porphyrin and metalloporphyrin spectra. Journal of the American Chemical Society, 90(24), 6577–6583. https://doi.org/10.1021/ja01026a001

Article  CAS  Google Scholar 

Uddin, J. (2012). Macro to nano spectroscopy (pp. 87–108). InTech.

Book  Google Scholar 

Gouterman, M. (1961). Spectra of porphyrins. Journal of Molecular Spectroscopy, 6, 138–163. https://doi.org/10.1016/0022-2852(61)90236-3

Article  CAS  Google Scholar 

Chanhom, P., Charoenlap, N., Manipuntee, C., & Insin, N. (2019). Metalloporphyrins-sensitized titania-silica-iron oxide nanocomposites with high photocatalytic and bactericidal activities under visible light irradiation. Journal of Magnetism and Magnetic Materials, 475, 602–610. https://doi.org/10.1016/j.jmmm.2018.11.090

Article  CAS  Google Scholar 

Valicsek, Z., & Horváth, O. (2013). Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions. Microchemical Journal, 107, 47–62. https://doi.org/10.1016/j.microc.2012.07.002

Article  CAS  Google Scholar 

Zhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136, 648–656. https://doi.org/10.1016/j.dyepig.2016.09.025

Article  CAS  Google Scholar 

Babu, B., Mack, J., & Nyokong, T. (2022). A Sn (IV) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells. New Journal of Chemistry, 46(11), 5288–5295. https://doi.org/10.1039/D2NJ00350C

Article  CAS  Google Scholar 

Babu, B., Prinsloo, E., Mack, J., & Nyokong, T. (2019). Synthesis, characterization and photodynamic activity of Sn (IV) triarylcorroles with red-shifted Q bands. New Journal of Chemistry, 43(47), 18805–18812. https://doi.org/10.1039/C9NJ03391B

Article  CAS  Google Scholar 

Rosa, A., Ricciardi, G., Baerends, E. J., Romeo, A., & Monsù Scolaro, L. (2013). Effects of porphyrin core saddling, meso-phenyl twisting, and counterions on the optical properties of meso-tetraphenylporphyrin diacids: The [H4TPP](X)2 (X = F, Cl, Br, I) series as a case study. Journal of Physical Chemistry A, 107(51), 11468–11482. https://doi.org/10.1021/jp030999n

Article  CAS  Google Scholar 

Chirvony, V. S., van Hoek, A., Galievsky, V. A., Sazanovich, I. V., Schaafsma, T. J., & Holten, D. (2000). The Journal of Physical Chemistry B, 104(42), 9909–9917. https://doi.org/10.1021/jp001631i

Article  CAS  Google Scholar 

Feng, L., Dong, Z., Tao, D., Zhang, Y., & Liu, Z. (2018). The acidic tumor microenvironment: A target for smart cancer nano-theranostics. National Science Review, 5(2), 269–286. https://doi.org/10.1093/nsr/nwx062

Article  CAS  Google Scholar 

Alkorta, I., Blanco, F., & Elguero, J. (2008). Acid properties of porphyrins and related systems. Russian Journal of General Chemistry, 78(4), 784–792. https://doi.org/10.1134/S1070363208040385

Article  CAS  Google Scholar 

Chirvony, V. S., van Hoek, A., Galievsky, V. A., Sazanovich, I. V., Schaafsma, T. J., & Holten, D. (2000). Comparative study of the photophysical properties of nonplanar tetraphenylporphyrin and octaethylporphyrin diacids. The Journal of Physical Chemistry B, 104, 9909. https://doi.org/10.1021/jp001631i

Article  CAS  Google Scholar 

Cavalleri, M., Damiano, C., Manca, G., & Gallo, E. (2023). Protonated porphyrins: bifunctional catalysts for the metal-free synthesis of N-alkyl-oxazolidinones. Chemistry: A European Journal, 29(1), e202202729. https://doi.org/10.1002/chem.202202729

Article  CAS  PubMed  Google Scholar 

Ivanova, Y. B., Pukhovskaya, S. G., Lyubimtsev, A. V., Plotnikova, A. O., & Syrbu, S. A. (2022). Spectral studies of protonated and anionic forms of porphyrins with an asymmetric substitution system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 102(5), 493–505. https://doi.org/10.1007/s10847-022-01131-8

Article  CAS  Google Scholar 

Oulmi, D., Maillard, P., Kern, J. L. G., Huel, C., & Momenteau, M. (1995). Synthesis of flat amphiphilic mixed meso-(glycosylated aryl) arylporphyrins and mixed meso-(glycosylated aryl) alkylporphyrins bearing some mono-and disaccharide groups. Journal of Organic Chemistry, 60(6), 1554–1564. https://doi.org/10.1021/jo00111a013

Article 

Comments (0)

No login
gif