Martel, D. C. D., Georges, G., & BrayFerlayClifford, F. J. G. M. (2020). Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. The Lancet Global Health, 8(2), e180–e190. https://doi.org/10.1016/S2214-109X(19)30488-7
Alvarez, N., & Sevilla, A. (2024). Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. International Journal of Molecular Sciences, 25(2), 1023. https://doi.org/10.3390/ijms25021023
Article CAS PubMed PubMed Central Google Scholar
Fenn, S. L., Miao, T., Scherrer, R. M., & Oldinski, R. A. (2016). Dual-cross-linked methacrylated alginate sub-microspheres for intracellular chemotherapeutic delivery. ACS Applied Materials & Interfaces, 8(28), 17775–17783. https://doi.org/10.1021/acsami.6b03245
Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., & Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience Trends, 9(1), 16–34. https://doi.org/10.5582/bst.2015.01019
Article CAS PubMed Google Scholar
Hampton, J. A., Goldblatt, P. J., & Selman, S. H. (1994). Photodynamic therapy: A new modality for the treatment of cancer. Annals of Clinical and Laboratory Science, 24(3), 203–210.
Gunaydin, G., Gedik, M. E., & Ayan, S. (2021). Photodynamic therapy for the treatment and diagnosis of cancer–a review of the current clinical status. Frontiers in Chemistry, 9, Article 686303. https://doi.org/10.3389/fchem.2021.686303
Article CAS PubMed PubMed Central Google Scholar
Dąbrowski, J. M. (2017). Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation. Advances in Inorganic Chemistry, 70, 343–394. https://doi.org/10.1016/bs.adioch.2017.03.002
Feng, X., Shi, Y., Xie, L., Zhang, K., Wang, X., Liu, Q., & Wang, P. (2018). Synthesis, characterization, and biological evaluation of a porphyrin-based photosensitizer and its isomer for effective photodynamic therapy against breast cancer. Journal of Medicinal Chemistry, 61(16), 7189–7201. https://doi.org/10.1021/acs.jmedchem.8b00547
Article CAS PubMed Google Scholar
Dewaele, M., Martinet, M., Rubio, N., Verfaillie de Witte, P. A., Piette, J., & Agostinis, P. (2011). Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. Journal of Cellular and Molecular Medicine, 15(6), 1402–1414. https://doi.org/10.1111/j.1582-4934.2010.01118.x
Article CAS PubMed Google Scholar
Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41(3), 211–218. https://doi.org/10.1016/j.tibs.2015.12.001
Article CAS PubMed PubMed Central Google Scholar
Jori, G. (1992). Far-red-absorbing photosensitizers: Their use in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology A: Chemistry, 62(3), 371–378. https://doi.org/10.1016/1010-6030(92)85065-3
Singh, S., Aggarwal, A., Bhupathiraju, N. D., Arianna, G., Tiwari, K., & Drain, C. M. (2015). Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chemical Reviews, 115(18), 10261–10306. https://doi.org/10.1021/acs.chemrev.5b00244
Article CAS PubMed PubMed Central Google Scholar
Kou, J., Dou, D., & Yang, L. (2017). Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8(46), 81591. https://doi.org/10.18632/oncotarget.20189
Article PubMed PubMed Central Google Scholar
Iengo, E., Zangrando, E., & Alessio, E. (2006). Synthetic strategies and structural aspects of metal-mediated multiporphyrin assemblies. Accounts of Chemical Research, 39(11), 841–851. https://doi.org/10.1021/ar040240+
Article CAS PubMed Google Scholar
Corwin, A. H., Chivvis, A. B., Poor, R. W., Whitten, D. G., & Baker, E. W. (1968). Porphyrin studies XXXVII. The interpretation of porphyrin and metalloporphyrin spectra. Journal of the American Chemical Society, 90(24), 6577–6583. https://doi.org/10.1021/ja01026a001
Uddin, J. (2012). Macro to nano spectroscopy (pp. 87–108). InTech.
Gouterman, M. (1961). Spectra of porphyrins. Journal of Molecular Spectroscopy, 6, 138–163. https://doi.org/10.1016/0022-2852(61)90236-3
Chanhom, P., Charoenlap, N., Manipuntee, C., & Insin, N. (2019). Metalloporphyrins-sensitized titania-silica-iron oxide nanocomposites with high photocatalytic and bactericidal activities under visible light irradiation. Journal of Magnetism and Magnetic Materials, 475, 602–610. https://doi.org/10.1016/j.jmmm.2018.11.090
Valicsek, Z., & Horváth, O. (2013). Application of the electronic spectra of porphyrins for analytical purposes: The effects of metal ions and structural distortions. Microchemical Journal, 107, 47–62. https://doi.org/10.1016/j.microc.2012.07.002
Zhao, X., Liu, X., Yu, M., Wang, C., & Li, J. (2017). The highly efficient and stable Cu Co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes and Pigments, 136, 648–656. https://doi.org/10.1016/j.dyepig.2016.09.025
Babu, B., Mack, J., & Nyokong, T. (2022). A Sn (IV) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells. New Journal of Chemistry, 46(11), 5288–5295. https://doi.org/10.1039/D2NJ00350C
Babu, B., Prinsloo, E., Mack, J., & Nyokong, T. (2019). Synthesis, characterization and photodynamic activity of Sn (IV) triarylcorroles with red-shifted Q bands. New Journal of Chemistry, 43(47), 18805–18812. https://doi.org/10.1039/C9NJ03391B
Rosa, A., Ricciardi, G., Baerends, E. J., Romeo, A., & Monsù Scolaro, L. (2013). Effects of porphyrin core saddling, meso-phenyl twisting, and counterions on the optical properties of meso-tetraphenylporphyrin diacids: The [H4TPP](X)2 (X = F, Cl, Br, I) series as a case study. Journal of Physical Chemistry A, 107(51), 11468–11482. https://doi.org/10.1021/jp030999n
Chirvony, V. S., van Hoek, A., Galievsky, V. A., Sazanovich, I. V., Schaafsma, T. J., & Holten, D. (2000). The Journal of Physical Chemistry B, 104(42), 9909–9917. https://doi.org/10.1021/jp001631i
Feng, L., Dong, Z., Tao, D., Zhang, Y., & Liu, Z. (2018). The acidic tumor microenvironment: A target for smart cancer nano-theranostics. National Science Review, 5(2), 269–286. https://doi.org/10.1093/nsr/nwx062
Alkorta, I., Blanco, F., & Elguero, J. (2008). Acid properties of porphyrins and related systems. Russian Journal of General Chemistry, 78(4), 784–792. https://doi.org/10.1134/S1070363208040385
Chirvony, V. S., van Hoek, A., Galievsky, V. A., Sazanovich, I. V., Schaafsma, T. J., & Holten, D. (2000). Comparative study of the photophysical properties of nonplanar tetraphenylporphyrin and octaethylporphyrin diacids. The Journal of Physical Chemistry B, 104, 9909. https://doi.org/10.1021/jp001631i
Cavalleri, M., Damiano, C., Manca, G., & Gallo, E. (2023). Protonated porphyrins: bifunctional catalysts for the metal-free synthesis of N-alkyl-oxazolidinones. Chemistry: A European Journal, 29(1), e202202729. https://doi.org/10.1002/chem.202202729
Article CAS PubMed Google Scholar
Ivanova, Y. B., Pukhovskaya, S. G., Lyubimtsev, A. V., Plotnikova, A. O., & Syrbu, S. A. (2022). Spectral studies of protonated and anionic forms of porphyrins with an asymmetric substitution system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 102(5), 493–505. https://doi.org/10.1007/s10847-022-01131-8
Oulmi, D., Maillard, P., Kern, J. L. G., Huel, C., & Momenteau, M. (1995). Synthesis of flat amphiphilic mixed meso-(glycosylated aryl) arylporphyrins and mixed meso-(glycosylated aryl) alkylporphyrins bearing some mono-and disaccharide groups. Journal of Organic Chemistry, 60(6), 1554–1564. https://doi.org/10.1021/jo00111a013
Comments (0)