In silico study of active delivery of a photodynamic therapy drug targeting the folate receptor

Liu, B., Zhou, H., Tan, L., Siu, K. T. H., & Guan, X.-Y. (2024). Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduction and Targeted Therapy, 9, 175.

Article  PubMed  PubMed Central  Google Scholar 

Juthani, R., Punatar, S., & Mittra, I. (2024). New light on chemotherapy toxicity and its prevention. BJC Reports, 2, 41.

Article  PubMed  PubMed Central  Google Scholar 

Dasari, S., & Bernard Tchounwou, P. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88, Article 102925.

Article  CAS  PubMed  Google Scholar 

Davodabadi, F., Sajjadi, S. F., Sarhadi, M., Mirghasemi, S., Nadali Hezaveh, M., Khosravi, S., Kamali Andani, M., Cordani, M., Basiri, M., & Ghavami, S. (2023). Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. European Journal of Pharmacology, 958, Article 176013.

Article  CAS  PubMed  Google Scholar 

Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S., & Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7, 339–348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387.

Article  CAS  PubMed  Google Scholar 

Chilakamarthi, U., & Giribabu, L. (2017). Photodynamic therapy: Past, present and future. The Chemical Record, 17, 775–802.

Article  CAS  PubMed  Google Scholar 

Agostinis, P., Berg, K., Cengel, K. A., et al. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61, 250–281.

PubMed  Google Scholar 

Henderson, B. W., & Dougherty, T. J. (1992). How does photodynamic therapy work? Photochemistry and Photobiology, 55, 145–157.

Article  CAS  PubMed  Google Scholar 

Feng, Y., Coradi Tonon, C., Ashraf, S., & Hasan, T. (2021). Photodynamic and antibiotic therapy in combination against bacterial infections: Efficacy, determinants, mechanisms, and future perspectives. Advanced Drug Delivery Reviews, 177, Article 113941.

Article  CAS  PubMed  Google Scholar 

Li, M., Tao, Y., Tang, J., Wang, Y., Zhang, X., Tao, Y., & Wang, X. (2019). Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. Journal of the American Chemical Society, 141, 281–289.

Article  CAS  PubMed  Google Scholar 

Kawczyk-Krupka, A., Pucelik, B., Międzybrodzka, A., Sieroń, A., & Dąbrowski, J. M. (2018). Photodynamic therapy as an alternative to antibiotic therapy for the treatment of infected leg ulcers. Photodiagnosis and Photodynamic Therapy. https://doi.org/10.1016/j.pdpdt.2018.05.001

Article  PubMed  Google Scholar 

Galinari, C. B., Biachi, T. D. P., Gonçalves, R. S., Cesar, G. B., Bergmann, E. V., Malacarne, L. C., Kioshima Cotica, É. S., Bonfim-Mendonça, P. D. S., & Svidzinski, T. I. E. (2023). Photoactivity of hypericin: From natural product to antifungal application. Critical Reviews in Microbiology, 49, 38–56.

Article  CAS  PubMed  Google Scholar 

Lin, S., Liu, C., Han, X., Zhong, H., & Cheng, C. (2021). Viral nanoparticle system: An effective platform for photodynamic therapy. IJMS, 22, 1728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benov, L. (2015). Photodynamic therapy: Current status and future directions. Medical Principles and Practice, 24, 14–28.

Article  PubMed  Google Scholar 

Pham, T. C., Nguyen, V. N., Choi, Y., Lee, S., & Yoon, J. (2021). Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chemical Reviews, 121, 13454–13619.

Article  CAS  PubMed  Google Scholar 

Garland, M. J., Cassidy, C. M., Woolfson, D., & Donnelly, R. F. (2009). Designing photosensitizers for photodynamic therapy: Strategies, challenges and promising developments. Future Medicinal Chemistry, 1, 667–691.

Article  CAS  PubMed  Google Scholar 

Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T., & Yang, Z. (2021). Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics, 13, 1332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Z., Han, F., Du, Y., Shi, H., & Zhou, W. (2023). Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 8, 70.

Article  PubMed  PubMed Central  Google Scholar 

Bonnet, S. (2018). Why develop photoactivated chemotherapy? Dalton Transactions, 47, 10330–10343.

Article  CAS  PubMed  Google Scholar 

Zhou, X.-Q., Wang, P., Ramu, V., et al. (2023). In vivo metallophilic self-assembly of a light-activated anticancer drug. Nature Chemistry, 15, 980–987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Askes, S. H. C., Bahreman, A., & Bonnet, S. (2014). Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes. Angewandte Chemie, 126, 1047–1051.

Article  Google Scholar 

Delova, A., Losantos, R. R., Pecourneau, J., Bernhard, Y., Mourere, M., Pasc, A., & Monari, A. (2022). Phase transitions in lipid bilayers by biomimetic photoswitches based on cyclocurcumin. BioRxiv. https://doi.org/10.1101/2022.09.11.507454

Article  Google Scholar 

Losantos, R., Pecourneau, J., Mourer, M., Parant, S., Pasc, A., & Monari, A. (2021). trans-cis Photoisomerization of a biomimetic cyclocurcumin analogue rationalized by molecular modelling. Physical Chemistry Chemical Physics: PCCP, 23, 12842–12849.

Article  CAS  PubMed  Google Scholar 

Pecourneau, J., Losantos, R., Monari, A., Parant, S., Pasc, A., & Mourer, M. (2021). Synthesis and photoswitching properties of bioinspired dissymmetric γ-pyrone, an analogue of cyclocurcumin. Journal of Organic Chemistry, 86, 8112–8126.

Article  CAS  PubMed  Google Scholar 

García-López, V., Chen, F., Nilewski, L. G., Duret, G., Aliyan, A., Kolomeisky, A. B., Robinson, J. T., Wang, G., Pal, R., & Tour, J. M. (2017). Molecular machines open cell membranes. Nature, 548, 567–572.

Article  PubMed  Google Scholar 

Aslanoglu, B., Yakavets, I., Zorin, V., Lassalle, H. P., Ingrosso, F., Monari, A., & Catak, S. (2020). Optical properties of photodynamic therapy drugs in different environments: The paradigmatic case of temoporfin. Physical Chemistry Chemical Physics, 22, 16956–16964.

Article  CAS  PubMed  Google Scholar 

Koca Fındık, B., Yakavets, I., Lassalle, H.-P., Catak, S., & Monari, A. (2024). Efficient delivering of a photodynamic therapy drug into cellular membranes rationalized by molecular dynamics. The Journal of Physical Chemistry B, 128, 11625–11633.

Article  PubMed  Google Scholar 

Koca, B., Hamuryudan, E., Catak, S., Erdogmus, A., Monari, A., & Aviyente, V. (2019). Exploring the photophysics of polyfluorinated phthalocyanine derivatives as potential theranostic agents. Journal of Physical Chemistry C, 123, 24417–24425.

Article  CAS  Google Scholar 

Chatterjee, D. K., Fong, L. S., & Zhang, Y. (2008). Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 60, 1627–1637.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif