A NIR dual-channel fluorescent probe for the detection of cyanide in living cells

Doman, G., Aoun, J., Truscinski, J., Truscinski, M., & Aouthmany, S. (2022). Cyanide poisoning. Journal of Education Teaching In Emergency Medicine, 7, 1–25.

Google Scholar 

Morocco, A. P. (2005). Cyanides. Critical Care Clinics, 21, 691–705. https://doi.org/10.1016/j.ccc.2005.06.002

Article  CAS  PubMed  Google Scholar 

J. L. Way, P. Leung, E. P. Cannon, R. L. Morgan, C. Tamulinas, J. L. Way, L. Baxter, A. Nagi, C. Chui, The Mechanism of Cyanide Intoxication and its Antagonism, Novartis Foundation Symposium 0 (2007) 232–248. https://doi.org/10.1002/9780470513712.ch14.

A. Aydin, D. Joseph, M. Joseph, B. Care, Carbon Monoxide and Cyanide Poisoning. Springer eBooks. 2024. pp. 123–135. https://doi.org/10.1007/978-3-031-40090-2-12.

Tang, Q., Dan, F., Ma, S., Zeng, X., & Lan, H. (2021). A Colorimetric and FluorescentProbe Based on Quinoline-Indolium for Detection of CN− in Aqueous Media. Chemistry Select, 6, 6557–6563. https://doi.org/10.1002/slct.202101532

Article  CAS  Google Scholar 

Suzuki, Y., Taguchi, K., & Okamoto, W. (2023). Methemoglobin-albumin clusters for cyanide detoxification. Toxicology and Applied Pharmacology, 466, 116472–116472. https://doi.org/10.1016/j.taap.2023.116472

Article  CAS  PubMed  Google Scholar 

Kobayashi, Y., Shimizu, Y., & Sekijima, Y. (2024). Brain cortical lesions following cyanide intoxication. Acta Neurologica Belgica. https://doi.org/10.1007/s13760-024-02593-y

Article  PubMed  Google Scholar 

Sharma, M., Akhter, Y., & Chatterjee, S. (2019). A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World Journal of Microbiology & Biotechnology, 35, 70. https://doi.org/10.1007/s11274-019-2643-8

Article  CAS  Google Scholar 

LU Kun-Ming (2006). World Health Organization (WHO), Guidelines for Drinking Water Quality, Third Edition (2004), Brief Introduction of “Water Safety Plan”. Water Purification Technology.

Leong, P. K., Sekine, T., Tam, K. V., Tam, S., & Tang, C. P. (2023). First-Principles Calculations with Six Structures of Alkaline Earth Metal Cyanide A(CN)2 (A= Be, Mg, Ca, Sr, and Ba): Structural. Electrical, and Phonon Properties, ACS omega, 8, 2973–2981. https://doi.org/10.1021/acsomega.2c05667

Article  CAS  PubMed  Google Scholar 

Bhadra, S., Chan, A. S., & Hendry-Hofer, T. B. (2022). Analysis of bisaminotetrazole cobinamide, a next-generation antidote for cyanide, hydrogen sulfide and methanethiol poisoning, in swine plasma by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1208, 123392–123392. https://doi.org/10.1016/j.jchromb.2022.123392

Article  CAS  Google Scholar 

Ibnul, N. K., Russell, J., & Dennen, K. (2024). Quantification of free and weakly bound cyanide in water using infrared spectroscopy. Talanta, 266, 124939. https://doi.org/10.1016/j.talanta.2023.124939

Article  CAS  PubMed  Google Scholar 

Cai, L. F., Ouyang, Z., & Song, J. H. (2020). Indicator-free argentometric titration for distance-based detection of chloride using microfluidic paper-based analytical devices. ACS Omega, 5, 18935–18940. https://doi.org/10.1021/acsomega.0c02143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cárdenas Riojas, A. A., Wong, A., & Planes, G. A. (2019). Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanidein river water samples. Sensors and Actuators B-chemical, 287, 544–550. https://doi.org/10.1016/j.snb.2019.02.053

Article  CAS  Google Scholar 

Wang, H. Z., Liu, Z. Q., & Xie, T. (2023). Electron-deficient moiety regulated structure: An efficient strategy for the design of a highly sensitive cyanide “turn-on” fluorescent probe. Sensors and Actuators B-chemical, 379, 133218–133218. https://doi.org/10.1016/j.snb.2022.133218

Article  CAS  Google Scholar 

Xie, Y. Q., Han, M. M., Zhang, Y. M., Chen, H., Zhang, H. B., Ren, C., Li, L., Wu, R., Yao, H., Shi, X., Lin, Q., & Wei, T. B. (2023). A novel fluorescent probe with high sensitivity for sequential detection of CN− and Al3+ in highly aqueous medium and its applications in living cell bioimaging. Journal of Photochemistry and Photobiology A-chemistry, 437, 114488–114488. https://doi.org/10.1016/j.jphotochem.2022.114488

Article  CAS  Google Scholar 

Ma, W., Chen, R., & Hu, T. (2023). New dual-responsive fluorescent sensor for hypochlorite and cyanide sensing and its imaging application in live cells and zebrafish. Talanta, 265, 124910. https://doi.org/10.1016/j.talanta.2023.124910

Article  CAS  PubMed  Google Scholar 

Deng, S., Qiao, L., Cai, J. Z., Jiang, Y. S., & Shen, J. (2020). A Novel Coumarin-basedFluorescent Probe with Aggregation Induced Emission for Detecting CN− andits Applications in Bioimaging. Journal of Fluorescence, 10, 8751–8759. https://doi.org/10.1007/s10895-021-02817-x

Article  CAS  Google Scholar 

Erdemir, S., & Malkondu, S. (2021). Visual and quantitative detection of CN− ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta, 221, 121639–121639. https://doi.org/10.1016/j.talanta.2020.121639

Article  CAS  PubMed  Google Scholar 

Wu, L. Q., Liu, Y., Wu, X. D., Li, Y. P., Du, J. S., Qi, S. L., Yang, Q. B., Xu, H., & Li, Y. X. (2022). A novel Near-Infrared fluorescent probe for Zn2+ and CN– double detection based on dicyanoisfluorone derivatives with highly sensitive and selective, and its application in Bioimaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 267, 120621–120621. https://doi.org/10.1016/j.saa.2021.120621

Article  CAS  PubMed  Google Scholar 

Li, L., Yang, T., & Yang, J. J. (2022). A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water. Sensors and Actuators B-chemical, 353, 131038–131038. https://doi.org/10.1016/j.snb.2021.131038

Article  CAS  Google Scholar 

Xie, Y. Q., Zhang, Y. M., Li, Z. H., Qi, X. N., Yao, H., Shi, B. B., Qu, W. J., Wei, T. B., & Lin, Q. (2018). A novel highly sensitive dual-channel chemical sensor for sequential recognition of Cu2+ and CN− in aqueous media and its bioimaging applications in living cells. New Journal of Chemistry, 73, 1014–1019. https://doi.org/10.1039/d1nj03548

Article  Google Scholar 

Erdemir, S., & Malkondu, S. (2021). Visual and quantitative detection of CN- ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta, 221, 121639. https://doi.org/10.1016/j.talanta.2020.121639

Article  CAS  PubMed  Google Scholar 

Xue, X. L., Zhang, H., Chen, G. H., Yu, G. H., Hu, H. R., Niu, S. Y., Wang, K. P., & Hu, Z. Q. (2023). Coumarin-cyanine hybrid: A ratiometric fluorescent probe for accurate detection of peroxynitrite in mitochondria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 292, 122443–122443. https://doi.org/10.1016/j.saa.2023.122443

Article  CAS  PubMed  Google Scholar 

Wang, Y., Xue, X. L., Zhang, Q., Wang, K. P., Chen, S. J., Tang, L. S., & Hu, Z. Q. (2022). A hemicyanine-based near-infrared fluorescent probe for vapor-phasehydrazine detection and bioimaging in a complete aqueous media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 279, 121406–121406. https://doi.org/10.1016/j.saa.2022.121406

Article  CAS  PubMed  Google Scholar 

Zhang, W., Yang, L., & Luo, Y. (2023). AIE biofluorescent probe based on twisted cucurbit uril for the detection of Fe(CN)63- anion in solutions and live kidney cells. Sensors and Actuators B-chemical, 379, 133255–133255. https://doi.org/10.1016/j.snb.2022.133255

Article  CAS  Google Scholar 

Huang, J. Y., Zhou, Y. H., Wang, W. X., Zhu, J. M., Li, X. C., Fang, M., Wu, Z. Y., Zhu, W. J., & Li, C. (2023). A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122011–122011. https://doi.org/10.1016/j.saa.2022.122011

Article  CAS  PubMed  Google Scholar 

Biswas, A., Mukherjee, R., Maji, A., Naskar, R., Aich, K., Murmu, N., & Kumar Mondal, T. (2024). A triphenylamine scaffold for fluorogenic sensing of noxious cyanide via ICT mechanism and its bioimaging application. Sensors Diagnostics, 3, 1201–1211.

Article  CAS  Google Scholar 

Li, J. J., Zhong, K. L., Tang, L. J., & Yan, X. M. (2021). A triphenylamine derived fluorescent probe for efficient detection of H2S based on aggregation-induced emission. New Journal of Chemistry, 45, 13399–13405. https://doi.org/10.1039/d1nj02816b

Article  CAS  Google Scholar 

Sun, W., Xu, H. H., Bao, S. Q., Yang, W. G., Shen, W. L., & Hu, G. X. (2022). A novel fluorescent probe based on triphenylamine for detecting sulfur dioxide derivatives. New Journal of Chemistry, 46, 5526–5533. https://doi.org/10.1039/d1nj06099f

Article  CAS  Google Scholar 

Chen, X. D., Chen, Q., He, D., Yang, S. X., Yang, Y. F., Qian, J., & Long, L. L. (2022). Kun Wang, Mitochondria targeted and immobilized ratiometric NIR fluorescent probe for investigating SO2 phytotoxicity in plant mitochondria. Sensors and Actuators B-chemical, 370, 132433–132433. https://doi.org/10.1016/j.snb.2022.132433

Article  CAS 

Comments (0)

No login
gif