Doman, G., Aoun, J., Truscinski, J., Truscinski, M., & Aouthmany, S. (2022). Cyanide poisoning. Journal of Education Teaching In Emergency Medicine, 7, 1–25.
Morocco, A. P. (2005). Cyanides. Critical Care Clinics, 21, 691–705. https://doi.org/10.1016/j.ccc.2005.06.002
Article CAS PubMed Google Scholar
J. L. Way, P. Leung, E. P. Cannon, R. L. Morgan, C. Tamulinas, J. L. Way, L. Baxter, A. Nagi, C. Chui, The Mechanism of Cyanide Intoxication and its Antagonism, Novartis Foundation Symposium 0 (2007) 232–248. https://doi.org/10.1002/9780470513712.ch14.
A. Aydin, D. Joseph, M. Joseph, B. Care, Carbon Monoxide and Cyanide Poisoning. Springer eBooks. 2024. pp. 123–135. https://doi.org/10.1007/978-3-031-40090-2-12.
Tang, Q., Dan, F., Ma, S., Zeng, X., & Lan, H. (2021). A Colorimetric and FluorescentProbe Based on Quinoline-Indolium for Detection of CN− in Aqueous Media. Chemistry Select, 6, 6557–6563. https://doi.org/10.1002/slct.202101532
Suzuki, Y., Taguchi, K., & Okamoto, W. (2023). Methemoglobin-albumin clusters for cyanide detoxification. Toxicology and Applied Pharmacology, 466, 116472–116472. https://doi.org/10.1016/j.taap.2023.116472
Article CAS PubMed Google Scholar
Kobayashi, Y., Shimizu, Y., & Sekijima, Y. (2024). Brain cortical lesions following cyanide intoxication. Acta Neurologica Belgica. https://doi.org/10.1007/s13760-024-02593-y
Sharma, M., Akhter, Y., & Chatterjee, S. (2019). A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World Journal of Microbiology & Biotechnology, 35, 70. https://doi.org/10.1007/s11274-019-2643-8
LU Kun-Ming (2006). World Health Organization (WHO), Guidelines for Drinking Water Quality, Third Edition (2004), Brief Introduction of “Water Safety Plan”. Water Purification Technology.
Leong, P. K., Sekine, T., Tam, K. V., Tam, S., & Tang, C. P. (2023). First-Principles Calculations with Six Structures of Alkaline Earth Metal Cyanide A(CN)2 (A= Be, Mg, Ca, Sr, and Ba): Structural. Electrical, and Phonon Properties, ACS omega, 8, 2973–2981. https://doi.org/10.1021/acsomega.2c05667
Article CAS PubMed Google Scholar
Bhadra, S., Chan, A. S., & Hendry-Hofer, T. B. (2022). Analysis of bisaminotetrazole cobinamide, a next-generation antidote for cyanide, hydrogen sulfide and methanethiol poisoning, in swine plasma by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1208, 123392–123392. https://doi.org/10.1016/j.jchromb.2022.123392
Ibnul, N. K., Russell, J., & Dennen, K. (2024). Quantification of free and weakly bound cyanide in water using infrared spectroscopy. Talanta, 266, 124939. https://doi.org/10.1016/j.talanta.2023.124939
Article CAS PubMed Google Scholar
Cai, L. F., Ouyang, Z., & Song, J. H. (2020). Indicator-free argentometric titration for distance-based detection of chloride using microfluidic paper-based analytical devices. ACS Omega, 5, 18935–18940. https://doi.org/10.1021/acsomega.0c02143
Article CAS PubMed PubMed Central Google Scholar
Cárdenas Riojas, A. A., Wong, A., & Planes, G. A. (2019). Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanidein river water samples. Sensors and Actuators B-chemical, 287, 544–550. https://doi.org/10.1016/j.snb.2019.02.053
Wang, H. Z., Liu, Z. Q., & Xie, T. (2023). Electron-deficient moiety regulated structure: An efficient strategy for the design of a highly sensitive cyanide “turn-on” fluorescent probe. Sensors and Actuators B-chemical, 379, 133218–133218. https://doi.org/10.1016/j.snb.2022.133218
Xie, Y. Q., Han, M. M., Zhang, Y. M., Chen, H., Zhang, H. B., Ren, C., Li, L., Wu, R., Yao, H., Shi, X., Lin, Q., & Wei, T. B. (2023). A novel fluorescent probe with high sensitivity for sequential detection of CN− and Al3+ in highly aqueous medium and its applications in living cell bioimaging. Journal of Photochemistry and Photobiology A-chemistry, 437, 114488–114488. https://doi.org/10.1016/j.jphotochem.2022.114488
Ma, W., Chen, R., & Hu, T. (2023). New dual-responsive fluorescent sensor for hypochlorite and cyanide sensing and its imaging application in live cells and zebrafish. Talanta, 265, 124910. https://doi.org/10.1016/j.talanta.2023.124910
Article CAS PubMed Google Scholar
Deng, S., Qiao, L., Cai, J. Z., Jiang, Y. S., & Shen, J. (2020). A Novel Coumarin-basedFluorescent Probe with Aggregation Induced Emission for Detecting CN− andits Applications in Bioimaging. Journal of Fluorescence, 10, 8751–8759. https://doi.org/10.1007/s10895-021-02817-x
Erdemir, S., & Malkondu, S. (2021). Visual and quantitative detection of CN− ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta, 221, 121639–121639. https://doi.org/10.1016/j.talanta.2020.121639
Article CAS PubMed Google Scholar
Wu, L. Q., Liu, Y., Wu, X. D., Li, Y. P., Du, J. S., Qi, S. L., Yang, Q. B., Xu, H., & Li, Y. X. (2022). A novel Near-Infrared fluorescent probe for Zn2+ and CN– double detection based on dicyanoisfluorone derivatives with highly sensitive and selective, and its application in Bioimaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 267, 120621–120621. https://doi.org/10.1016/j.saa.2021.120621
Article CAS PubMed Google Scholar
Li, L., Yang, T., & Yang, J. J. (2022). A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water. Sensors and Actuators B-chemical, 353, 131038–131038. https://doi.org/10.1016/j.snb.2021.131038
Xie, Y. Q., Zhang, Y. M., Li, Z. H., Qi, X. N., Yao, H., Shi, B. B., Qu, W. J., Wei, T. B., & Lin, Q. (2018). A novel highly sensitive dual-channel chemical sensor for sequential recognition of Cu2+ and CN− in aqueous media and its bioimaging applications in living cells. New Journal of Chemistry, 73, 1014–1019. https://doi.org/10.1039/d1nj03548
Erdemir, S., & Malkondu, S. (2021). Visual and quantitative detection of CN- ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta, 221, 121639. https://doi.org/10.1016/j.talanta.2020.121639
Article CAS PubMed Google Scholar
Xue, X. L., Zhang, H., Chen, G. H., Yu, G. H., Hu, H. R., Niu, S. Y., Wang, K. P., & Hu, Z. Q. (2023). Coumarin-cyanine hybrid: A ratiometric fluorescent probe for accurate detection of peroxynitrite in mitochondria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 292, 122443–122443. https://doi.org/10.1016/j.saa.2023.122443
Article CAS PubMed Google Scholar
Wang, Y., Xue, X. L., Zhang, Q., Wang, K. P., Chen, S. J., Tang, L. S., & Hu, Z. Q. (2022). A hemicyanine-based near-infrared fluorescent probe for vapor-phasehydrazine detection and bioimaging in a complete aqueous media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 279, 121406–121406. https://doi.org/10.1016/j.saa.2022.121406
Article CAS PubMed Google Scholar
Zhang, W., Yang, L., & Luo, Y. (2023). AIE biofluorescent probe based on twisted cucurbit uril for the detection of Fe(CN)63- anion in solutions and live kidney cells. Sensors and Actuators B-chemical, 379, 133255–133255. https://doi.org/10.1016/j.snb.2022.133255
Huang, J. Y., Zhou, Y. H., Wang, W. X., Zhu, J. M., Li, X. C., Fang, M., Wu, Z. Y., Zhu, W. J., & Li, C. (2023). A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122011–122011. https://doi.org/10.1016/j.saa.2022.122011
Article CAS PubMed Google Scholar
Biswas, A., Mukherjee, R., Maji, A., Naskar, R., Aich, K., Murmu, N., & Kumar Mondal, T. (2024). A triphenylamine scaffold for fluorogenic sensing of noxious cyanide via ICT mechanism and its bioimaging application. Sensors Diagnostics, 3, 1201–1211.
Li, J. J., Zhong, K. L., Tang, L. J., & Yan, X. M. (2021). A triphenylamine derived fluorescent probe for efficient detection of H2S based on aggregation-induced emission. New Journal of Chemistry, 45, 13399–13405. https://doi.org/10.1039/d1nj02816b
Sun, W., Xu, H. H., Bao, S. Q., Yang, W. G., Shen, W. L., & Hu, G. X. (2022). A novel fluorescent probe based on triphenylamine for detecting sulfur dioxide derivatives. New Journal of Chemistry, 46, 5526–5533. https://doi.org/10.1039/d1nj06099f
Chen, X. D., Chen, Q., He, D., Yang, S. X., Yang, Y. F., Qian, J., & Long, L. L. (2022). Kun Wang, Mitochondria targeted and immobilized ratiometric NIR fluorescent probe for investigating SO2 phytotoxicity in plant mitochondria. Sensors and Actuators B-chemical, 370, 132433–132433. https://doi.org/10.1016/j.snb.2022.132433
Comments (0)