Marcone, G. L., Rosini, E., & Crespi, E. (2020). d-Amino acids in foods. Applied Microbiology and Biotechnology, 104, 555–574.
Article PubMed CAS Google Scholar
Grishin, D. V., Zhdanov, D. D., Pokrovskaya, M. V., & Sokolov, N. N. (2020). d-Amino acids in nature, agriculture and biomedicine. All Life, 13, 11–22.
Du, S., Wey, M., & Armstrong, D. W. (2023). d-Amino acids in biological systems. Chirality, 35, 508–534.
Article PubMed CAS Google Scholar
Pollegioni, L., Kustrimovic, N., Piubelli, L., Rosini, E., Rabattoni, V., & Sacchi, S. (2025). d-Amino acids: New functional insights. FEBS Journal. https://doi.org/10.1111/febs.70083
Carenzi, G., Sacchi, S., & Abbondi, M. (2020). Direct chromatographic methods for enantioresolution of amino acids: Recent developments. Amino Acids, 52, 849–862.
Article PubMed CAS Google Scholar
Calderón, C., & Lämmerhofer, M. (2021). Enantioselective metabolomics by liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 207, 114430.
Konya, Y., Izumi, Y., Hamase, K., & Bamba, T. (2022). Ultrafast simultaneous chiral analysis of native amino acid enantiomers using supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1677, 463305.
Article PubMed CAS Google Scholar
Oyaide, M., Ishii, C., Akita, T., Kimura, T., Sakai, S., Mizui, M., Mita, M., Ide, T., Isaka, Y., & Hamase, K. (2024). Development of a three-dimensional HPLC system for the determination of serine, threonine and allo-threonine enantiomers in the plasma of patients with chronic kidney disease. Journal of Chromatography A, 1719, 464739.
Article PubMed CAS Google Scholar
Kasaoka, S., Tsuboyama-Kasaoka, N., Kawahara, Y., Inoue, S., Tsuji, M., Ezaki, O., Kato, H., Tsuchiya, T., Okuda, H., & Nakajima, S. (2004). Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition, 20, 991–996.
Article PubMed CAS Google Scholar
Okusha, Y., Hirai, Y., Maezawa, H., Hisadome, K., Inoue, N., Yamazaki, Y., & Funahashi, M. (2017). Effects of intraperitoneally administered l-histidine on food intake, taste, and visceral sensation in rats. The Journal of Physiological Sciences, 67, 467–474.
Article PubMed CAS Google Scholar
Holeček, M., & Vodeničarovová, M. (2020). Effects of histidine supplementation on amino acid metabolism in rats. Physiological Research, 69, 99–111.
Moro, J., Tomé, D., Schmidely, P., Demersay, T. C., & Azzout-Marniche, D. (2020). Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients, 12, 1414.
Article PubMed PubMed Central CAS Google Scholar
Domalain, V., Hubert-Roux, M., Tognetti, V., Joubert, L., Lange, C. M., Rouden, J., & Afonso, C. (2014). Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry. Chemical Science, 5, 3234–3239.
Yu, X., & Yao, Z.-P. (2017). Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry. Analytica Chimica Acta, 981, 62–70.
Article PubMed CAS Google Scholar
Zlibut, E., May, J. C., & McLean, J. A. (2022). Enantiomer differentiation of amino acid stereoisomers by structural mass spectrometry using noncovalent trinuclear copper complexes. Journal of the American Society for Mass Spectrometry, 33, 996–1002.
Article PubMed CAS Google Scholar
Tao, W. A., Zhang, D., Nikolaev, E. N., & Cooks, R. G. (2000). Copper(II)-assisted enantiomeric analysis of d, l-amino acids using the kinetic method: Chiral recognition and quantification in the gas phase. Journal of the American Chemical Society, 122, 10598–10609.
Yao, Z.-P., Wan, T. S. M., Kwong, K.-P., & Che, C.-T. (2000). Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 2. Determination of enantiomeric excess of amino acids. Analytical chemistry, 72, 5394–5401.
Article PubMed CAS Google Scholar
Bain, R. M., Yan, X., Raab, S. A., Ayrton, S. T., Flick, T. G., & Cooks, R. G. (2016). On-line chiral analysis using the kinetic method. The Analyst, 141, 2441–2446.
Article PubMed CAS Google Scholar
Fujihara, A., & Maeda, N. (2017). Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition. Analytica Chimica Acta, 979, 31–35.
Article PubMed CAS Google Scholar
Sen, A., Barbu-Debus, K. L., Scuderi, D., & Zehnacker-Rentien, A. (2013). Mass spectrometry study and infrared spectroscopy of the complex between camphor and the two enantiomers of protonated alanine: The role of higher-energy conformers in the enantioselectivity of the dissociation rate constants. Chirality, 25, 436–443.
Article PubMed CAS Google Scholar
Shi, Y., Du, M., Ren, J., Zhang, K., Xu, Y., & Kong, X. (2020). Application of infrared multiple photon dissociation (IRMPD) spectroscopy in chiral analysis. Molecules, 25, 5152.
Article PubMed PubMed Central CAS Google Scholar
Cong, X., Czerwieniec, G., McJimpsey, E., Ahn, S., Troy, F. A., & Lebrilla, C. B. (2006). Structural relationships in small molecule interactions governing gas-phase enantioselectivity and zwitterionic formation. Journal of the American Society for Mass Spectrometry, 17, 442–452.
Article PubMed CAS Google Scholar
Speranza, M., Gasparrini, F., Botta, B., Villani, C., Subissati, D., Fraschetti, C., & Subrizi, F. (2009). Gas-phase enantioselective reactions in noncovalent ion-molecule complexes. Chirality, 21, 69–86.
Article PubMed CAS Google Scholar
Nakakoji, T., Sato, H., Ono, D., Miyake, H., Shinoda, S., Tsukube, H., Kawasaki, H., Arakawa, R., & Shizuma, M. (2020). Mass spectrometric detection of enantioselectivity in three-component complexation, copper(II)-chiral tetradentate ligand-free amino acid in solution. Chemical Communications, 56, 54–57.
Nakakoji, T., Sato, H., Ono, D., Miyake, H., Mieda, E., Shinoda, S., Tsukube, H., Kawasaki, H., Arakawa, R., & Shizuma, M. (2021). One-pot analysis of enantiomeric excess of free amino acids by electrospray ionization mass spectrometry. RSC Advances, 11, 36237–36241.
Article PubMed PubMed Central CAS Google Scholar
Fuke, K., Tona, M., Fujihara, A., Sakurai, M., & Ishikawa, H. (2012). Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique. Review of Scientific Instruments, 83, 085106.
Article PubMed CAS Google Scholar
Fuke, K. (2023). Preparation of cold ions in strong magnetic field and application to gas-phase NMR spectroscopy II. International Journal of Mass Spectrometry, 490, 117068.
Callahan, M. P., Smith, K. E., Cleaves, H. J., II., Ruzicka, J., Stern, J. C., Glavin, D. P., House, C. H., & Dworkin, J. P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National academy of Sciences of the United States of America, 108, 13995–13998.
Article PubMed PubMed Central CAS Google Scholar
Burton, A. S., Stern, J. C., Elsila, J. E., Glavin, D. P., & Dworkin, J. P. (2012). Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews, 41, 5459–5472.
Article PubMed CAS Google Scholar
Furukawa, Y., Chikaraishi, Y., Ohkouchi, N., Ogawa, N. O., Glavin, D. P., Dworkin, J. P., Abe, C., & Nakamura, T. (2019). Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National academy of Sciences of the United States of America, 116, 24440–24445.
Comments (0)