-Amino acid analysis in solution using the photochemical properties of protonated adenosine

Marcone, G. L., Rosini, E., & Crespi, E. (2020). d-Amino acids in foods. Applied Microbiology and Biotechnology, 104, 555–574.

Article  PubMed  CAS  Google Scholar 

Grishin, D. V., Zhdanov, D. D., Pokrovskaya, M. V., & Sokolov, N. N. (2020). d-Amino acids in nature, agriculture and biomedicine. All Life, 13, 11–22.

Article  Google Scholar 

Du, S., Wey, M., & Armstrong, D. W. (2023). d-Amino acids in biological systems. Chirality, 35, 508–534.

Article  PubMed  CAS  Google Scholar 

Pollegioni, L., Kustrimovic, N., Piubelli, L., Rosini, E., Rabattoni, V., & Sacchi, S. (2025). d-Amino acids: New functional insights. FEBS Journal. https://doi.org/10.1111/febs.70083

Article  PubMed  Google Scholar 

Carenzi, G., Sacchi, S., & Abbondi, M. (2020). Direct chromatographic methods for enantioresolution of amino acids: Recent developments. Amino Acids, 52, 849–862.

Article  PubMed  CAS  Google Scholar 

Calderón, C., & Lämmerhofer, M. (2021). Enantioselective metabolomics by liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 207, 114430.

Article  PubMed  Google Scholar 

Konya, Y., Izumi, Y., Hamase, K., & Bamba, T. (2022). Ultrafast simultaneous chiral analysis of native amino acid enantiomers using supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1677, 463305.

Article  PubMed  CAS  Google Scholar 

Oyaide, M., Ishii, C., Akita, T., Kimura, T., Sakai, S., Mizui, M., Mita, M., Ide, T., Isaka, Y., & Hamase, K. (2024). Development of a three-dimensional HPLC system for the determination of serine, threonine and allo-threonine enantiomers in the plasma of patients with chronic kidney disease. Journal of Chromatography A, 1719, 464739.

Article  PubMed  CAS  Google Scholar 

Kasaoka, S., Tsuboyama-Kasaoka, N., Kawahara, Y., Inoue, S., Tsuji, M., Ezaki, O., Kato, H., Tsuchiya, T., Okuda, H., & Nakajima, S. (2004). Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition, 20, 991–996.

Article  PubMed  CAS  Google Scholar 

Okusha, Y., Hirai, Y., Maezawa, H., Hisadome, K., Inoue, N., Yamazaki, Y., & Funahashi, M. (2017). Effects of intraperitoneally administered l-histidine on food intake, taste, and visceral sensation in rats. The Journal of Physiological Sciences, 67, 467–474.

Article  PubMed  CAS  Google Scholar 

Holeček, M., & Vodeničarovová, M. (2020). Effects of histidine supplementation on amino acid metabolism in rats. Physiological Research, 69, 99–111.

Article  PubMed  Google Scholar 

Moro, J., Tomé, D., Schmidely, P., Demersay, T. C., & Azzout-Marniche, D. (2020). Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients, 12, 1414.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Domalain, V., Hubert-Roux, M., Tognetti, V., Joubert, L., Lange, C. M., Rouden, J., & Afonso, C. (2014). Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry. Chemical Science, 5, 3234–3239.

Article  CAS  Google Scholar 

Yu, X., & Yao, Z.-P. (2017). Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry. Analytica Chimica Acta, 981, 62–70.

Article  PubMed  CAS  Google Scholar 

Zlibut, E., May, J. C., & McLean, J. A. (2022). Enantiomer differentiation of amino acid stereoisomers by structural mass spectrometry using noncovalent trinuclear copper complexes. Journal of the American Society for Mass Spectrometry, 33, 996–1002.

Article  PubMed  CAS  Google Scholar 

Tao, W. A., Zhang, D., Nikolaev, E. N., & Cooks, R. G. (2000). Copper(II)-assisted enantiomeric analysis of d, l-amino acids using the kinetic method: Chiral recognition and quantification in the gas phase. Journal of the American Chemical Society, 122, 10598–10609.

Article  CAS  Google Scholar 

Yao, Z.-P., Wan, T. S. M., Kwong, K.-P., & Che, C.-T. (2000). Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 2. Determination of enantiomeric excess of amino acids. Analytical chemistry, 72, 5394–5401.

Article  PubMed  CAS  Google Scholar 

Bain, R. M., Yan, X., Raab, S. A., Ayrton, S. T., Flick, T. G., & Cooks, R. G. (2016). On-line chiral analysis using the kinetic method. The Analyst, 141, 2441–2446.

Article  PubMed  CAS  Google Scholar 

Fujihara, A., & Maeda, N. (2017). Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition. Analytica Chimica Acta, 979, 31–35.

Article  PubMed  CAS  Google Scholar 

Sen, A., Barbu-Debus, K. L., Scuderi, D., & Zehnacker-Rentien, A. (2013). Mass spectrometry study and infrared spectroscopy of the complex between camphor and the two enantiomers of protonated alanine: The role of higher-energy conformers in the enantioselectivity of the dissociation rate constants. Chirality, 25, 436–443.

Article  PubMed  CAS  Google Scholar 

Shi, Y., Du, M., Ren, J., Zhang, K., Xu, Y., & Kong, X. (2020). Application of infrared multiple photon dissociation (IRMPD) spectroscopy in chiral analysis. Molecules, 25, 5152.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cong, X., Czerwieniec, G., McJimpsey, E., Ahn, S., Troy, F. A., & Lebrilla, C. B. (2006). Structural relationships in small molecule interactions governing gas-phase enantioselectivity and zwitterionic formation. Journal of the American Society for Mass Spectrometry, 17, 442–452.

Article  PubMed  CAS  Google Scholar 

Speranza, M., Gasparrini, F., Botta, B., Villani, C., Subissati, D., Fraschetti, C., & Subrizi, F. (2009). Gas-phase enantioselective reactions in noncovalent ion-molecule complexes. Chirality, 21, 69–86.

Article  PubMed  CAS  Google Scholar 

Nakakoji, T., Sato, H., Ono, D., Miyake, H., Shinoda, S., Tsukube, H., Kawasaki, H., Arakawa, R., & Shizuma, M. (2020). Mass spectrometric detection of enantioselectivity in three-component complexation, copper(II)-chiral tetradentate ligand-free amino acid in solution. Chemical Communications, 56, 54–57.

Article  CAS  Google Scholar 

Nakakoji, T., Sato, H., Ono, D., Miyake, H., Mieda, E., Shinoda, S., Tsukube, H., Kawasaki, H., Arakawa, R., & Shizuma, M. (2021). One-pot analysis of enantiomeric excess of free amino acids by electrospray ionization mass spectrometry. RSC Advances, 11, 36237–36241.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fuke, K., Tona, M., Fujihara, A., Sakurai, M., & Ishikawa, H. (2012). Design and development of a novel nuclear magnetic resonance detection for the gas phase ions by magnetic resonance acceleration technique. Review of Scientific Instruments, 83, 085106.

Article  PubMed  CAS  Google Scholar 

Fuke, K. (2023). Preparation of cold ions in strong magnetic field and application to gas-phase NMR spectroscopy II. International Journal of Mass Spectrometry, 490, 117068.

Article  CAS  Google Scholar 

Callahan, M. P., Smith, K. E., Cleaves, H. J., II., Ruzicka, J., Stern, J. C., Glavin, D. P., House, C. H., & Dworkin, J. P. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National academy of Sciences of the United States of America, 108, 13995–13998.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burton, A. S., Stern, J. C., Elsila, J. E., Glavin, D. P., & Dworkin, J. P. (2012). Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews, 41, 5459–5472.

Article  PubMed  CAS  Google Scholar 

Furukawa, Y., Chikaraishi, Y., Ohkouchi, N., Ogawa, N. O., Glavin, D. P., Dworkin, J. P., Abe, C., & Nakamura, T. (2019). Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National academy of Sciences of the United States of America, 116, 24440–24445.

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif