FDA (2003) Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products—general considerations. Food and Drug Administration, Rockville
Morais JAG, Lobato MdR (2010) The new European Medicines Agency guideline on the investigation of bioequivalence. Basic Clin Pharmacol Toxicol 106(3):221–225. https://doi.org/10.1111/j.1742-7843.2009.00518.x
Article PubMed CAS Google Scholar
Jalali RK, Rasaily D (2018) Generic drug and bioequivalence studies. In: Pharmaceutical medicine and translational clinical researched. Elsevier, pp327–339. https://doi.org/10.1016/B978-0-12-802103-3.00021-3
Bego M, Patel N, Cristofoletti R, Rostami-Hodjegan A (2022) Proof of concept in assignment of within-subject variability during virtual bioequivalence studies: propagation of intra-subject variation in gastrointestinal physiology using physiologically based pharmacokinetic modeling. AAPS J 24(1):21. https://doi.org/10.1208/s12248-021-00672-z
Han M, He Y, Liang J, Yao F, Lu P, Yan H, Wang J, Xie Y, Li X, Liu Q (2024) Pharmacokinetics and bioequivalence study of candesartan cilexetil tablet in Chinese volunteers under fasting condition: an open-label, randomized-sequence, 2-period crossover study. Transl Clin Pharmacol 32(2):107. https://doi.org/10.12793/tcp.2024.32.e10
Article PubMed PubMed Central Google Scholar
Lee S-M, Jang J-H, Jeong S-H (2024) Exploring gender differences in pharmacokinetics of central nervous system related medicines based on a systematic review approach. Naunyn Schmiedebergs Arch Pharmacol 397:8311–8347. https://doi.org/10.1007/s00210-024-03190-9
Article PubMed CAS Google Scholar
Jeong S-H, Jang J-H, Cho H-Y, Lee Y-B (2024) Sex differences in 4-tert-octylphenol toxicokinetics: Exploration of sex as an effective covariate through an in vivo modeling approach. Toxicology 502:153733. https://doi.org/10.1016/j.tox.2024.153733
Article PubMed CAS Google Scholar
Karalis V, Symillides M, Macheras P (2012) Bioequivalence of highly variable drugs: a comparison of the newly proposed regulatory approaches by FDA and EMA. Pharm Res 29:1066–1077. https://doi.org/10.1007/s11095-011-0651-y
Article PubMed CAS Google Scholar
Karalis V, Macheras P, Van Peer A, Shah VP (2008) Bioavailability and bioequivalence: focus on physiological factors and variability. Pharm Res 25:1956–1962. https://doi.org/10.1007/s11095-008-9645-9
Article PubMed CAS Google Scholar
Ibarra M, Vázquez M, Fagiolino P (2017) Sex effect on average bioequivalence. Clin Ther 39(1):23–33. https://doi.org/10.1016/j.clinthera.2016.11.024
Article PubMed CAS Google Scholar
Almeda S, Filipe A, Almeida A, Wong H, Caparrós N, Tanguay M (2005) Comparative bioavailability of two formulations of levofloxacin and effect of sex on bioequivalence analysis. Arzneim Forsch Drug Res 55(7):414–419. https://doi.org/10.1055/s-0031-1296880
Almeida S, Filipe A, Almeida A, Gich I, Antonijoan R, Puntes M, Barbanoj M, Caturla MC (2006) Comparative study on the bioequivalence of two formulations of pravastatin. Arzneim Forsch Drug Res 56(2):70–75. https://doi.org/10.1055/s-0031-1296704
Chen M-L, Williams RL (1995) Women in bioavailability/bioequivalence trials—A regulatory perspective. Drug Inf J 29(3):813–820. https://doi.org/10.1177/009286159502900304
Chen ML, Lee SC, Ng MJ, Schuirmann DJ, Lesko LJ, Williams RL (2000) Pharmacokinetic analysis of bioequivalence trials: Implications for sex-related issues in clinical pharmacology and biopharmaceutics. Clin Pharmacol Ther 68(5):510–521. https://doi.org/10.1067/mcp.2000.111184
Article PubMed CAS Google Scholar
Fagiolino P, González N, Vázquez M, Eiraldi R (2007) Itraconazole bioequivalence revisited: Influence of gender on highly variable drugs. Open Drug Metab J 1:7–13. https://doi.org/10.2174/1874073100701010007
Gundeti M, Murthy A, Jamdade S, Ahmed T (2024) Evaluating gender effect in the generic bioequivalence studies by physiologically based pharmacokinetic modeling–A case study of dextromethorphan modified release tablets. Biopharm Drug Dispos. https://doi.org/10.1002/bdd.2389
Ibarra M, Magallanes L, Lorier M, Vázquez M, Fagiolino P (2016) Sex-by-formulation interaction assessed through a bioequivalence study of efavirenz tablets. Eur J Pharm Sci 85:106–111. https://doi.org/10.1016/j.ejps.2016.02.001
Article PubMed CAS Google Scholar
Koren G, Nordeng H, MacLeod S (2013) Gender differences in drug bioequivalence: time to rethink practices. Clin Pharmacol Ther 93(3):260–262. https://doi.org/10.1038/clpt.2012.233
Article PubMed CAS Google Scholar
Romodanovsky D, Goryachev D, Khokhlov A, Miroshnikov A (2018) Influence of sex differences on pharmacokinetics of drugs within the framework of bioequivalence studies of generic medicinal products. Acta Biomed Sci 3(5):94–105. https://doi.org/10.29413/ABS.2018-3.5.15
Chen M-L, Shah V, Patnaik R, Adams W, Hussain A, Conner D, Mehta M, Malinowski H, Lazor J, Huang S-M (2001) Bioavailability and bioequivalence: an FDA regulatory overview. Pharm Res 18:1645–1650. https://doi.org/10.1023/A:1013319408893
Article PubMed CAS Google Scholar
Chow SC (2014) Bioavailability and bioequivalence in drug development. Wiley Interdiscip Rev Comput Stat 6(4):304–312. https://doi.org/10.1002/wics.1310
Article PubMed PubMed Central Google Scholar
EMA (2017) Reflection paper on the dissolution specification for generic solid oral immediate release products with systemic action (EMA/CHMP/CVMP/QWP/336031/2017). European Medicines Agency (EMA), London, UK
FDA (2018) Waiver of in vivo bioavailability and bioequivalence studies for immediaterelease solid oral dosage forms base on a Biopharmaceutics Classification System. Maryland, EUA, 2017:19
Jeong S-H, Jang J-H, Lee Y-B (2023) Exploring differences in pharmacometrics of rabeprazole between genders via population pharmacokinetic-pharmacodynamic modeling. Biomedicines 11(11):3021. https://doi.org/10.3390/biomedicines11113021
Article PubMed PubMed Central CAS Google Scholar
Jeong S-H, Jang J-H, Lee Y-B (2024) Is gender an important factor in the precision medicine approach to levocetirizine? Pharmaceutics 16(1):146. https://doi.org/10.3390/pharmaceutics16010146
Article PubMed PubMed Central CAS Google Scholar
Tothfalusi L, Endrenyi L, Arieta AG (2009) Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence. Clin Pharmacokinet 48:725–743. https://doi.org/10.2165/11318040-000000000-00000
Article PubMed CAS Google Scholar
Ring A, Lang B, Kazaroho C, Labes D, Schall R, Schütz H (2019) Sample size determination in bioequivalence studies using statistical assurance. Br J Clin Pharmacol 85(10):2369–2377. https://doi.org/10.1111/bcp.14055
Article PubMed PubMed Central CAS Google Scholar
Pabst G, Jaeger H (1990) Review of methods and criteria for the evaluation of bioequivalence studies. Eur J Clin Pharmacol 38:5–10. https://doi.org/10.1007/BF00314794
Article PubMed CAS Google Scholar
Munoz J, Alcaide D, Ocaña J (2016) Consumer’s risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs. Stat Med 35(12):1933–1943. https://doi.org/10.1002/sim.6834
Dubois A, Lavielle M, Gsteiger S, Pigeolet E, Mentré F (2011) Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Stat Med 30(21):2582–2600. https://doi.org/10.1002/sim.4286
Singh GJP, Adams WP, Lesko LJ, Shah VP, Molzon JA, Williams RL, Pershing LK (1999) Development of in vivo bioequivalence methodology for dermatologic corticosteroids based on pharmacodynamic modeling. Clin Pharmacol Ther 66(4):346–357. https://doi.org/10.1053/cp.1999.v66.a101209
Comments (0)