The European Public Assessment Reports Summary of Product Characteristics (2025) Available from the European Medicines Agency Web Page: https://www.ema.europa.eu/en/medicines. Accessed 28 Nov 2024
Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, Berkowitz SD, Fox KA, Califf RM, Investigators RA (2011) Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 365(10):883–891. https://doi.org/10.1056/NEJMoa1009638
Article CAS PubMed Google Scholar
Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L, Committees A, Investigators, (2011) Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 365(11):981–992. https://doi.org/10.1056/NEJMoa1107039
Article CAS PubMed Google Scholar
Mega JL, Walker JR, Ruff CT, Vandell AG, Nordio F, Deenadayalu N, Murphy SA, Lee J, Mercuri MF, Giugliano RP, Antman EM, Braunwald E, Sabatine MS (2015) Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet (London, England) 385(9984):2280–2287. https://doi.org/10.1016/s0140-6736(14)61994-2
Article CAS PubMed Google Scholar
Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L, Committee R-LS, Investigators, (2009) Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 361(12):1139–1151. https://doi.org/10.1056/NEJMoa0905561
Article CAS PubMed Google Scholar
Cross B, Turner RM, Zhang JE, Pirmohamed M (2024) Being precise with anticoagulation to reduce adverse drug reactions: are we there yet? Pharmacogenomics J 24(2):7. https://doi.org/10.1038/s41397-024-00329-y
Article CAS PubMed Central PubMed Google Scholar
Shi J, Wu T, Wu S, Chen X, Ye Q, Zhang J (2023) Effect of genotype on the pharmacokinetics and bleeding events of direct oral anticoagulants: a systematic review and meta-analysis. J Clin Pharmacol 63(3):277–287. https://doi.org/10.1002/jcph.2168
Article CAS PubMed Google Scholar
Campos-Staffico AM, Dorsch MP, Barnes GD, Zhu HJ, Limdi NA, Luzum JA (2022) Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients. Front Pharmacol 13:1007113. https://doi.org/10.3389/fphar.2022.1007113
Article CAS PubMed Central PubMed Google Scholar
GWAS Catalog (2025) Available from: https://www.ebi.ac.uk/gwas/. Accessed 30 May 2022
Pare G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, Axelsson T, Haertter S, Oldgren J, Reilly P, Siegbahn A, Syvanen AC, Wadelius C, Wadelius M, Zimdahl-Gelling H, Yusuf S, Wallentin L (2013) Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127(13):1404–1412. https://doi.org/10.1161/CIRCULATIONAHA.112.001233
Article CAS PubMed Google Scholar
Li H, Zhang Z, Weng H, Qiu Y, Zubiaur P, Zhang Y, Fan G, Yang P, Vuorinen AL, Zuo X, Zhai Z, Wang C (2022) Association between CES1 rs2244613 and the pharmacokinetics and safety of dabigatran: meta-analysis and quantitative trait loci analysis. Front Cardiovasc Med 9:959916. https://doi.org/10.3389/fcvm.2022.959916
Article CAS PubMed Central Google Scholar
Attelind S, Hallberg P, Wadelius M, Hamberg AK, Siegbahn A, Granger CB, Lopes RD, Alexander JH, Wallentin L, Eriksson N (2022) Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front Genet 13:982955. https://doi.org/10.3389/fgene.2022.982955
Article CAS PubMed Central Google Scholar
Hallberg P, Yue QY, Eliasson E, Melhus H, As J, Wadelius M (2020) SWEDEGENE-a Swedish nation-wide DNA sample collection for pharmacogenomic studies of serious adverse drug reactions. Pharmacogenomics J 20(4):579–585. https://doi.org/10.1038/s41397-020-0148-3
Article CAS PubMed Central Google Scholar
Schulman S, Kearon C (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3:692–694. https://doi-org.ezproxy.its.uu.se/10.1111/j.1538-7836.2005.01204.x
Magnusson PK, Almqvist C, Rahman I, Ganna A, Viktorin A, Walum H, Halldner L, Lundstrom S, Ullen F, Langstrom N, Larsson H, Nyman A, Gumpert CH, Rastam M, Anckarsater H, Cnattingius S, Johannesson M, Ingelsson E, Klareskog L, de Faire U, Pedersen NL, Lichtenstein P (2013) The Swedish Twin Registry: establishment of a biobank and other recent developments. Twin Res Hum Genet 16(1):317–329. https://doi.org/10.1017/thg.2012.104
Megy K, Downes K, Simeoni I, Bury L, Morales J, Mapeta R, Bellissimo DB, Bray PF, Goodeve AC, Gresele P, Lambert M, Reitsma P, Ouwehand WH, Freson K, Subcommittee on Genomics in T, Hemostasis, (2019) Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost : JTH 17(8):1253–1260. https://doi.org/10.1111/jth.14479
Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A, Bastarache LA, Wei WQ, Denny JC, Lin M, Hveem K, Kang HM, Abecasis GR, Willer CJ, Lee S (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50(9):1335–1341. https://doi.org/10.1038/s41588-018-0184-y
Article CAS PubMed Central Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54: 1.30.31–31.30.33. https://doi.org/10.1002/cpbi.5
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347 (6220):1260419. https://doi.org/10.1126/science.1260419
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P, Jensen LJ, von Mering C (2023) The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 51(D1):D638–D646. https://doi.org/10.1093/nar/gkac1000
Article CAS PubMed Google Scholar
Bazinet CKA, Morgan M, Mahowald AP, Lemmon SK (1993) The Drosophila clathrin heavy chain gene: clathrin function is essential in a multicellular organism. Genetics 134(4):1119–1134. https://doi.org/10.1093/genetics/134.4.1119
Article CAS PubMed Central PubMed Google Scholar
Banerjee M, Whiteheart SW (2017) The ins and outs of endocytic trafficking in platelet functions. Curr Opin Hematol 24(5):467–474. https://doi.org/10.1097/MOH.0000000000000366
Article CAS PubMed Central PubMed Google Scholar
Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391. https://doi.org/10.1038/86882
Article CAS PubMed Google Scholar
Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alfoldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K, Genome Aggregation Database C, O’Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJ (2024) A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625(7993):92–100. https://doi.org/10.1038/s41586-023-06045-0
Article CAS PubMed Google Scholar
Wu T, Wu S, Li L, Xiang J, Wang N, Chen W, Zhang J (2023) The impact of ABCB1, CYP3A4/5 and ABCG2 gene polymorphisms on rivaroxaban trough concentrations and bleeding events in patients with non-valvular atrial fibrillation. Hum Genomics 17(1):59. https://doi.org/10.1186/s40246-023-00506-3
Article CAS PubMed Central PubMed Google Scholar
Skripka AI, Krupenin PM, Kozhanova ON, Kudryavtseva AA, Fedina LV, Akmalova KA, Bochkov PO, Sokolova AA, Napalkov DA, Sychev DA (2024) The impact of ABCB1, CYP3A4 and CYP3A5 gene polymorphisms on apixaban trough concentration and bleeding risk in patients with atrial fibrillation. Drug Metab Pers Ther 39(2):89–97. https://doi.org/10.1515/dmpt-2024-0013
Article CAS PubMed Google Scholar
Seidizadeh O, Eikenboom JCJ, Denis CV, Flood VH, James P, Lenting PJ, Baronciani L, O’Donnell JS, Lillicrap D, Peyvandi F (2024) von Willebrand disease. Nat Rev Dis Primers 10(1):51. https://doi.org/10.1038/s41572-024-00536-8
Ueshima S, Hira D, Kimura Y, Fujii R, Tomitsuka C, Yamane T, Tabuchi Y, Ozawa T, Itoh H, Ohno S, Horie M, Terada T, Katsura T (2018) Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol 84(6):1301–1312. https://doi.org/10.1111/bcp.13561
Comments (0)