Effects of oral antidiabetic agents on the renin–angiotensin–aldosterone system

Nistala R, Wei Y, Sowers JR, Whaley-Connell A (2009) Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease. Transl Res 153(3):102–113

CAS  PubMed  PubMed Central  Google Scholar 

Ma-O Ames, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33(2):363–382

Google Scholar 

Yamazaki D, Hitomi H, Nishiyama A (2018) Hypertension with diabetes mellitus complications. Hypertens Res 41:147–156

PubMed  Google Scholar 

Demarsilis A et al (2022) Pharmacotherapy of type 2 diabetes: an update and future directions. Metabolism 137

Thethi T, Kamiyama M, Kobori H (2012) The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep 14:160–169

CAS  PubMed  PubMed Central  Google Scholar 

Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287

CAS  PubMed  Google Scholar 

Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6:261–273

CAS  PubMed  Google Scholar 

Takimoto-Ohnishi E, Murakami K (2019) Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci 69:581–587

PubMed  PubMed Central  Google Scholar 

Marcus Y, Shefer G, Stern N (2013) Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 378:1–14

CAS  PubMed  Google Scholar 

Qi Y et al (2012) Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol 97:89–101

CAS  PubMed  Google Scholar 

Ra-O Santos et al (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98(1):05–553

Google Scholar 

Rabelo LA, Alenina N, Bader M (2011) ACE2-angiotensin-(1–7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res 34(2):154–160

CAS  PubMed  Google Scholar 

Siragy HM, Carey RM (2010) Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am J Nephrol 31:541–550

CAS  PubMed  PubMed Central  Google Scholar 

Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206

CAS  PubMed  Google Scholar 

Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85:417–423

CAS  PubMed  PubMed Central  Google Scholar 

Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG (2004) AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension 43:1126–1132

CAS  PubMed  Google Scholar 

Puglisi S et al (2021) Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol 12:738–848

Google Scholar 

Shade RE, Davis JO, Johnson JA, Gotshall RW, Spielman WS (1973) Mechanism of action of antiotensin II and antidiuretic hormone on renin secretion. Am J Physiol-Leg Content 224:926–929

CAS  Google Scholar 

Prescott G, Silversides DW, Reudelhuber TL (2002) Tissue activity of circulating prorenin. Am J Hypertens 15:280–285

CAS  PubMed  Google Scholar 

Dostal DE, Baker KM (1999) The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85(7):643–650

CAS  PubMed  Google Scholar 

Ansary TM, Nakano D, Nishiyama A (2019) Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 20(3):629

CAS  PubMed  PubMed Central  Google Scholar 

Cherney DZ et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597

CAS  PubMed  Google Scholar 

Castaneda AM et al (2021) Sodium-glucose cotransporter 2 inhibitors (SGLT2i): renal implications. Int Urol Nephrol 53:291–299

CAS  PubMed  Google Scholar 

Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B (2016) Update on RAAS modulation for the treatment of diabetic cardiovascular dIsease. J Diabetes Res 2016:8917578

PubMed  PubMed Central  Google Scholar 

Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33:363–382

PubMed  PubMed Central  Google Scholar 

Bie P, Mølstrøm S, Wamberg S (2009) Normotensive sodium loading in conscious dogs: regulation of renin secretion during beta-receptor blockade. Am J Physiol Regul Integr Comp Physiol 96(2):R428-435

Google Scholar 

Defronzo RA, Davidson JA, Del Prato S (2012) The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab 14:5–14

CAS  PubMed  Google Scholar 

Gerard AO, Laurain A, Favre G, Drici MD, Esnault VLM (2022) Activation of the tubulo-glomerular feedback by SGLT2 inhibitors in patients with type 2 diabetes and advanced chronic kidney disease: toward the end of a myth? Diabetes Care 45:e148–e149

PubMed  PubMed Central  Google Scholar 

Sarzani R, Giulietti F, Di Pentima C, Spannella F (2020) Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 30:1622–1632

CAS  PubMed  Google Scholar 

Marton A et al (2024) Water conservation overrides osmotic diuresis during SGLT2 Inhibition in patients with heart failure. J Am Coll Cardiol 83(5):1386–1398

CAS  PubMed  Google Scholar 

Sarzani R, Giulietti F, Di Pentima C, Spannella F (2020) Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 30(10):1622–1632

CAS  PubMed  Google Scholar 

Zinman B, Lachin JM, Inzucchi SE (2016) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 374(11):1094

PubMed  Google Scholar 

Rahman A, Fujisawa Y, Nakano D, Hitomi H, Nishiyama A (2017) Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol 44:522–525

CAS  PubMed  Google Scholar 

Wan N, Rahman A, Hitomi H, Nishiyama A (2018) The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol (Lausanne) 9:421

PubMed  Google Scholar 

Koliaki C, Doupis J (2011) Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther 2:101–121

CAS  PubMed  PubMed Central  Google Scholar 

Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742

CAS  PubMed  Google Scholar 

Scott KA, Moran TH (2007) The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am J Physiol Regul Integr Comp Physiol 293(3):R983-987

CAS  PubMed  Google Scholar 

Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157

CAS  PubMed  Google Scholar 

Wootten D et al (2011) Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 336(2):540–550

CAS  PubMed  Google Scholar 

Skov J (2014) Effects of GLP-1 in the kidney. Rev Endocr Metab Disord 15:197–207

CAS  PubMed  Google Scholar 

Beraldo JI et al (2019) Cardioprotection conferred by sitagliptin is associated with reduced cardiac angiotensin II/angiotensin-(1–7) balance in experimental chronic kidney disease. Int J Mol Sci 20(0):1940

CAS  PubMed 

Comments (0)

No login
gif