Nistala R, Wei Y, Sowers JR, Whaley-Connell A (2009) Renin-angiotensin-aldosterone system-mediated redox effects in chronic kidney disease. Transl Res 153(3):102–113
CAS PubMed PubMed Central Google Scholar
Ma-O Ames, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33(2):363–382
Yamazaki D, Hitomi H, Nishiyama A (2018) Hypertension with diabetes mellitus complications. Hypertens Res 41:147–156
Demarsilis A et al (2022) Pharmacotherapy of type 2 diabetes: an update and future directions. Metabolism 137
Thethi T, Kamiyama M, Kobori H (2012) The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep 14:160–169
CAS PubMed PubMed Central Google Scholar
Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287
Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6:261–273
Takimoto-Ohnishi E, Murakami K (2019) Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci 69:581–587
PubMed PubMed Central Google Scholar
Marcus Y, Shefer G, Stern N (2013) Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 378:1–14
Qi Y et al (2012) Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol 97:89–101
Ra-O Santos et al (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98(1):05–553
Rabelo LA, Alenina N, Bader M (2011) ACE2-angiotensin-(1–7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res 34(2):154–160
Siragy HM, Carey RM (2010) Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am J Nephrol 31:541–550
CAS PubMed PubMed Central Google Scholar
Darby IA, Sernia C (1995) In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res 281:197–206
Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85:417–423
CAS PubMed PubMed Central Google Scholar
Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG (2004) AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension 43:1126–1132
Puglisi S et al (2021) Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol 12:738–848
Shade RE, Davis JO, Johnson JA, Gotshall RW, Spielman WS (1973) Mechanism of action of antiotensin II and antidiuretic hormone on renin secretion. Am J Physiol-Leg Content 224:926–929
Prescott G, Silversides DW, Reudelhuber TL (2002) Tissue activity of circulating prorenin. Am J Hypertens 15:280–285
Dostal DE, Baker KM (1999) The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85(7):643–650
Ansary TM, Nakano D, Nishiyama A (2019) Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci 20(3):629
CAS PubMed PubMed Central Google Scholar
Cherney DZ et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597
Castaneda AM et al (2021) Sodium-glucose cotransporter 2 inhibitors (SGLT2i): renal implications. Int Urol Nephrol 53:291–299
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B (2016) Update on RAAS modulation for the treatment of diabetic cardiovascular dIsease. J Diabetes Res 2016:8917578
PubMed PubMed Central Google Scholar
Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33:363–382
PubMed PubMed Central Google Scholar
Bie P, Mølstrøm S, Wamberg S (2009) Normotensive sodium loading in conscious dogs: regulation of renin secretion during beta-receptor blockade. Am J Physiol Regul Integr Comp Physiol 96(2):R428-435
Defronzo RA, Davidson JA, Del Prato S (2012) The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab 14:5–14
Gerard AO, Laurain A, Favre G, Drici MD, Esnault VLM (2022) Activation of the tubulo-glomerular feedback by SGLT2 inhibitors in patients with type 2 diabetes and advanced chronic kidney disease: toward the end of a myth? Diabetes Care 45:e148–e149
PubMed PubMed Central Google Scholar
Sarzani R, Giulietti F, Di Pentima C, Spannella F (2020) Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 30:1622–1632
Marton A et al (2024) Water conservation overrides osmotic diuresis during SGLT2 Inhibition in patients with heart failure. J Am Coll Cardiol 83(5):1386–1398
Sarzani R, Giulietti F, Di Pentima C, Spannella F (2020) Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 30(10):1622–1632
Zinman B, Lachin JM, Inzucchi SE (2016) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 374(11):1094
Rahman A, Fujisawa Y, Nakano D, Hitomi H, Nishiyama A (2017) Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clin Exp Pharmacol Physiol 44:522–525
Wan N, Rahman A, Hitomi H, Nishiyama A (2018) The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol (Lausanne) 9:421
Koliaki C, Doupis J (2011) Incretin-based therapy: a powerful and promising weapon in the treatment of type 2 diabetes mellitus. Diabetes Ther 2:101–121
CAS PubMed PubMed Central Google Scholar
Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742
Scott KA, Moran TH (2007) The GLP-1 agonist exendin-4 reduces food intake in nonhuman primates through changes in meal size. Am J Physiol Regul Integr Comp Physiol 293(3):R983-987
Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157
Wootten D et al (2011) Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 336(2):540–550
Skov J (2014) Effects of GLP-1 in the kidney. Rev Endocr Metab Disord 15:197–207
Beraldo JI et al (2019) Cardioprotection conferred by sitagliptin is associated with reduced cardiac angiotensin II/angiotensin-(1–7) balance in experimental chronic kidney disease. Int J Mol Sci 20(0):1940
Comments (0)