Phytochemical fingerprinting of phytotoxins as a cutting-edge approach for unveiling nature’s secrets in forensic science

Coyle HM. Forensic botany: principles and applications to criminal casework. Boca Raton: CRC Press; 2004.

Book  Google Scholar 

Hall DW, Byrd J. Forensic botany: a practical guide. Boca Raton: John Wiley & Sons; 2012.

Book  Google Scholar 

Bock JH, Norris DO. Forensic plant science. Amsterdam: Academic Press; 2015.

Google Scholar 

Coyle HM, Lee C-L, Lin W-Y, Lee HC, Palmbach TM. Forensic botany: using plant evidence to aid in forensic death investigation. Croat Med J. 2005;46(4):606.

Google Scholar 

Coyle HM, Ladd C, Palmbach T, Lee HC. The green revolution: botanical contributions to forensics and drug enforcement. Croat Med J. 2001;42:340–5.

Google Scholar 

Bozorgi M, Amin GR, Ostad SN, Samadi N, Nazem E, Shekarchi M. Toxicological, chemical and antibacterial evaluation of squill vinegar, a useful product in Persian traditional medicine. Res J Pharmacogn. 2017;4:33–9.

Google Scholar 

Sharrock S, Oldfield S, Wilson O. Plant conservation report 2014: a review of progress towards the global strategy for plant conservation 2011–2020. 2014.

Oliveira M, Azevedo L, Ballard D, Branicki W, Amorim A. Using plants in forensics: state-of-the-art and prospects. Plant Sci. 2023;336: 111860.

Article  PubMed  Google Scholar 

Oliveira M, Lackner M, Amorim A, Araujo R. Feasibility of mitochondrial single nucleotide polymorphisms to detect and identify Aspergillus fumigatus in clinical samples. Diagn Microbiol Infect Dis. 2014;80:53–8.

Article  PubMed  Google Scholar 

Qu D, Qiao D-F, Chen X-C, Feng C-Q, Luo Q-Z, Tan X-H. Fatal poisoning by accidental ingestion of the “heartbreak grass” (Gelsemium elegans) verified by toxicological and medico-legal analyses. For Sci Int. 2021;321: 110745.

Google Scholar 

Coyle HM, Lee HC, Palmbach TM. Forensic botany plants as evidence in criminal cases and as agents of bioterrorism. In: Coyle HM, editor. Forensic DNA applications. 2nd ed. Boca Raton: CRC Press; 2023.

Google Scholar 

Bernhoft A, Siem H, Bjertness E, Meltzer M, Flaten T, Holmsen E. Bioactive compounds in plants–benefits and risks for man and animals. Nor Acad Sci Lett Oslo. 2010;4:13–4.

Google Scholar 

Nugroho D, Chanthai S, Oh W-C, Benchawattananon R. Fluorophores-rich natural powder from selected medicinal plants for detection latent fingerprints and cyanide. Sci Prog. 2023;106:00368504231156217.

Article  PubMed  PubMed Central  Google Scholar 

Dubey NK, Dwivedy AK, Chaudhari AK, Das S. Common toxic plants and their forensic significance. In: Dubey NK, editor. Natural products and drug discovery. Amsterdam: Elsevier; 2018. p. 349–74.

Chapter  Google Scholar 

Anywar G. Historical Use of Toxic Plants. In: Anywar G, editor. Poisonous plants and phytochemicals in drug discovery. Ltd: John Wiley & Sons; 2020. p. 1–17.

Google Scholar 

Raje SC, Bhagat DS, Nimbalkar RK, Shejul SK, Bumbrah GS, Sankhla MS. Contributions and current trends of forensic botany in crime scene investigation. Forensic Sci J. 2022;21:1–2.

Google Scholar 

Hotti H, Rischer H. The killer of socrates: coniine and related alkaloids in the plant kingdom. Molecules. 2017;22:1962.

Article  PubMed  PubMed Central  Google Scholar 

Retief FP, Cilliers L. Poisoning during the Renaissance: The Medicis and the Borgias. 2000.

Stegelmeier BL, James LF, Panter KE, Ralphs MH, Gardner DR, Molyneux RJ, et al. The pathogenesis and toxicokinetics of locoweed (Astragalus and Oxytropis spp.) poisoning in livestock. J Nat Toxins. 1999;8:35–45.

PubMed  Google Scholar 

Dodson C, Dunmire WW. Mountain wildflowers of the southern rockies: revealing their natural history. London: UNM Press; 2007.

Google Scholar 

Norn S, Kruse PR. Hjerteglykosider: fra oldtiden over Witherings digitalis til endogen glykosider [Cardiac glycosides: from ancient history through Withering’s foxglove to endogeneous cardiac glycosides]. Dan Med Arbog. 2004;2004:119–32.

Google Scholar 

Siritunga D, Sayre R. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol Biol. 2004;56:661–9.

Article  PubMed  Google Scholar 

Plants T. Ingestion of toxic plants by herbivores. J Range Manag. 45: 36–45.

Strzelecki A, Pichon N, Gaulier JM, Amiel JB, Champy P, Clavel M. Acute toxic herbal intake in a suicide attempt and fatal refractory Ventricular Arrhythmia. Basic Clin Pharmacol Toxicol. 2010;107:698–9.

Article  PubMed  Google Scholar 

Sinha M, Sahu M, Sallawad SS, Ahirwar B, Isukapatla AR. Characteristics and Identifying features of various natural toxins and poisonous plants used as weapons in forensic cases. Res J Pharm Technol. 2017;10:4237–41.

Article  Google Scholar 

Shedge R, Krishan K, Warrier V, Kanchan T. Postmortem changes. In: Shedge R, Krishan K, Warrier V, Kanchan T, editors. Postmortem changes. Treasure Island: StatPearls Publishing; 2019.

Google Scholar 

Almulhim AM, Menezes RG. Evaluation of postmortem changes. Treasure Island: StatPearls Publishing; 2020.

Google Scholar 

Nelson L, Shih R, Balick M. Handbook of poisonous and injurious plants. Boston: Springer, US; 2007.

Google Scholar 

Kuete V. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In: Kuete V, editor. Toxicological survey of African medicinal plants. Amsterdam: Elsevier; 2014. p. 635–57.

Chapter  Google Scholar 

Dolinak D, Matshes E, Lew EO. Forensic pathology: principles and practice. Amsterdam: Elsevier; 2005.

Google Scholar 

Matsuyama S, Nishi K. Genus identification of toxic plant by real-time PCR. Int J Legal Med. 2011;125:211–7.

Article  PubMed  Google Scholar 

Weedn VW. Bases of forensic pathology expert testimony with emphasis on Iowa v Tyler. Acad Forensic Pathol. 2021;11:185–95.

Article  PubMed  PubMed Central  Google Scholar 

Gaillard Y, Pepin G. Poisoning by plant material: review of human cases and analytical determination of main toxins by high-performance liquid chromatography–(tandem) mass spectrometry. J Chromatogr B Biomed Sci App. 1999;733:181–229.

Article  Google Scholar 

Patil A, Paikrao HM, Patil S. The chemistry and biology of the plant poisons and their forensic significance. In: Patil A, editor. Studies in natural products chemistry. Amsterdam: Elsevier; 2023. p. 255–321.

Google Scholar 

Tahir F, Ali E, Hassan SA, Bhat ZF, Walayat N, Nawaz A, et al. Cyanogenic glucosides in plant-based foods: occurrence, detection methods, and detoxification strategies—a comprehensive review. Microchem J. 2024;199: 110065.

Article  Google Scholar 

Wink M, Van Wyk B-E. Mind-altering and poisonous plants of the world. New York: Timber Press; 2008.

Google Scholar 

Benowitz NL. Nicotine safety and toxicity. Oxford: Oxford University Press; 1998.

Book  Google Scholar 

Li J, Zhang F, Gu Y, Ye Y, Li L, Liu M, et al. Forensic aspects about fatal morphine intoxication of an unusual body packer: case report and literature review. Forensic Sci Int Rep. 2021;3: 100207.

Article  Google Scholar 

Refahy LA-G. Study on flavonoids and triterpenoids content of some Euphorbiaceae plants. J Life Sci. 2011;5:100–7.

Google Scholar 

Dickers KJ, Bradberry SM, Rice P, Griffiths GD, Vale JA. Abrin poisoning. Toxicol Rev. 2003;22:137–42.

Article  PubMed  Google Scholar 

Holstege CP. Criminal poisoning: clinical and forensic perspectives. New York: Jones & Bartlett Publishers; 2010.

Google Scholar 

Sandvig K, Olsnes S, Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem. 1976;251:3977–84.

Article  PubMed  Google Scholar 

Kim J-Y, Park S-C, Hwang I, Cheong H, Nah J-W, Hahm K-S, et al. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci. 2009;10:2860–72.

Article  PubMed  PubMed Central  Google Scholar 

Downs JW, Wills BK. Phenol toxicity. 2019.

Maugeri A, Lombardo GE, Cirmi S, Süntar I, Barreca D, Laganà G, et al. Pharmacology and toxicology of tannins. Arch Toxicol. 2022;96:1257–77.

Article  PubMed  Google Scholar 

Murray AR, Kisin E, Castranova V, Kommineni C, Gunther MR, Shvedova AA. Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion. Chem Res Toxicol. 2007;20:1769–77.

Article  PubMed  Google Scholar 

Toschi A, Piva A, Grilli E. Phenol-rich botanicals modulate oxidative stress and epithelial integrity in intestinal epithelial cells. Animals. 2022;12:2188.

Article  PubMed  PubMed Central  Google Scholar 

Kumar R, Vaithiyanathan S. Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim Feed Sci Technol. 1990;30:21–38.

Article  Google Scholar 

Kumar R, Horigome T. Fractionation, characterization and protein-precipitating capacity of the condensed tannins from Robinia pseudoacacia L. leaves. J Agric Food Chem. 1986;34:487–9.

Article  Google Scholar 

Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The multifaceted photocytotoxic profile of hypericin. Mol Pharm. 2009;6:1775–89.

Article  PubMed  Google Scholar 

Shukla V, Asthana S, Gupta P, Dwivedi PD, Tripathi A, Das M. toxicity of naturally occurring anthraquinones. In: Shukla V, editor. advances in molecular toxicology. Amsteradam: Elsevier; 2017. p. 1–50.

Comments (0)

No login
gif