K. N. Liou, “Influence of cirrus clouds on weather and climate processes—a global perspective,” Mon. Weather. Rev. 114, 1167–1199 (1986). https://doi.org/10.1175/1520-0493(1986)114<1167:IO-CCOW>2.0.CO;2
Article ADS MATH Google Scholar
E. Zubko, K. Shmirko, A. Pavlov, W. B. Sun, G. L. Schuster, Y. X. Hu, S. Stamnes, A. Omar, R. R. Baize, M. P. McCormick, R. Loughman, J. A. Arnold, and G. Videen, “Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity,” Opt. Lett. 46, 2352–2355 (2021). https://doi.org/10.1364/OL.426584
K. Sassen, J. Zhu, and S. Benson, “Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003). https://doi.org/10.1364/AO.42.000332
V. Noel and K. Sassen, “Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44, 653–664 (2005). https://doi.org/10.1175/JAM2223.1
J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German meteorological service autonomous raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012). https://doi.org/10.1364/AO.51.008111
I. V. Tkachev, D. N. Timofeev, N. V. Kustova, and A. V. Konoshonkin, “Databank of Mueller matrices on atmospheric ice crystals of 10–100 mm for interpretation of ground-based and space-borne lidar data,” Opt. Atmos. Okeana 34 (3), 199–206 (2021). https://doi.org/10.15372/AOO20210306
A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, D. N. Timofeev, I. V. Tkachev, E. Bakute, A. E. Babinovich, X. Zhu, and Z. Wang, “Properties of light backscattering on hollow hexagonal ice columns for optical models of cirrus clouds,” Atmos. Ocean. Opt. 37 (2), 252–261 (2024).
L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011). https://doi.org/10.1016/j.jqsrt.2011.02.015
Article ADS MATH Google Scholar
P. Yang and K. N. Liou, “Geometric-optics—integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). https://doi.org/10.1364/AO.35.006568
Article ADS MATH Google Scholar
A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014). https://doi.org/10.1016/j.jqsrt.2014.04.030
Article ADS MATH Google Scholar
A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012). https://doi.org/10.1364/OE.20.028222
A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38, 2881–2884 (2013). https://doi.org/10.1364/OL.38.002881
Article ADS MATH Google Scholar
A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013). https://doi.org/10.1364/OL.38.002881
Article ADS MATH Google Scholar
H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar,” Opt. Express 27, 36 587–36 600 (2019). https://doi.org/10.1364/OE.27.036587
H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications,” Opt. Express 28, 29 178–29 191 (2020). https://doi.org/10.1364/OE.400510
K. Masuda, H. Ishimoto, and Y. Mano, “Efficient method of computing a geometric optics integral for light scattering by nonspherical particles,” Pap. Meteorol. Geophys. 63, 15–19 (2012). https://doi.org/10.2467/mripapers.63.15
R. P. Lawson, S. Woods, E. Jensen, E. Erfani, C. Gurganus, M. Gallagher, P. Connolly, J. Whiteway, A. J. Baran, P. May, A. Heymsfield, C. G. Schmitt, G. McFarquhar, J. Um, A. Protat, M. Bailey, S. Lance, A. Muehlbauer, J. Stith, A. Korolev, O. B. Toon, and M. Kramer, “A review of ice particle shapes in cirrus formed in situ and in anvils,” J. Geophys. Res.: Atmos. 124, 10 049–10 090 (2019). https://doi.org/10.1029/2018JD030122
A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Exp 23, 24 557–24 571 (2015). https://doi.org/10.1364/OE.23.024557
Z. Wang, V. Shishko, N. Kustova, A. Konoshonkin, D. Timofeev, C. Xie, D. Liu, and A. Borovoi, “Radar-lidar ratio for ice crystals of cirrus clouds,” Opt. Express 29, 4464–4474. https://doi.org/10.1364/OE.410942
V. Shishko, A. Konoshonkin, N. Kustova, D. Timofeev, and A. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27, 32 984–32 993 (2019). https://doi.org/10.1364/OE.27.032984
W. Lin, L. Bi, F. Weng, Z. Li, and O. Dubovik, “Capability of superspheroids for modeling PARASOL observations under dusty-sky conditions,” J. Geophys. Res.: Atmos. 126 (1), 10 049–10 090 (2021). https://doi.org/10.1029/2020JD033310
L. H. Sun, L. Bi, and B. Q. Yi, “The use of superspheroids as surrogates for modeling electromagnetic wave scattering by ice crystals,” Remote Sens. 13 (9), 1733 (2021). https://doi.org/10.3390/rs13091733
Article ADS MATH Google Scholar
C. G. Schmitt and A. J. Heymsfield, “On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus,” J. Atmos. Sci. 64, 4514–4519 (2007). https://doi.org/10.1175/2007JAS2317.1
Article ADS MATH Google Scholar
A. G. Borovoi, “Light scattering by large particles: Physical optics and the shadow-forming field,” in Light Scattering Reviews, Vol. 8, Ed, by A.A. Kokhanovsky (Springer-Praxis, Berlin, 2013).
A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25, 22 341–22 346 (2017). https://doi.org/10.1364/OE.25.022341
M. Bailey and J. Hallett, “Growth rates and habits of ice crystals between –20 degrees and –70 degrees c,” J. Atmos. Sci. 61, 514–544 (2004). https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
Article ADS MATH Google Scholar
C. Gil-Díaz, M. Sicard, A. Comerón, D. C. F. dos Santos Oliveira, C. Muñoz-Porcar, A. Rodríguez-Gómez, J. R. Lewis, E. J. Welton, and S. Lolli, “Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 5 years of lidar measurements,” Atmos. Meas. Tech. Discuss. 2023, 1–31 (2023). https://doi.org/10.5194/amt-17-1197-2024
A. J. Heymsfield, M. Krämer, A. Luebke, P. Brown, D. J. Cziczo, C. Franklin, P. Lawson, U. Lohmann, G. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorol. Monographs 58, 2.1–2.6 (2017).
A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 29, 311–317 (1970). https://doi.org/10.1175/1520-0469(1970)027<0919:T-DOICI>2.0.CO;2
Article ADS MATH Google Scholar
A. J. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972). https://doi.org/10.1175/1520-0469(1972)029<1348:I-CTV>2.0.CO;2
Article ADS MATH Google Scholar
A. J. Heymsfield, C. Schmitt, and A. Bansemer, “Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 to –86°C,” J. Atmos. Sci. 70 (12), 4123–4154 (2013). https://doi.org/10.1175/JAS-D-12-0124.1
Article ADS MATH Google Scholar
M. Saito and P. Yang, “Generalization of atmospheric nonspherical particle size: Interconversions of size distributions and optical equivalence,” J. Atmos. Sci. 79, 3333–3349 (2022). https://doi.org/10.1175/JAS-D-22-0086.1
Comments (0)