Optical Model of a Cirrus Cloud Consisting of Hollow Ice Hexagonal Columns for Lidar Applications

K. N. Liou, “Influence of cirrus clouds on weather and climate processes—a global perspective,” Mon. Weather. Rev. 114, 1167–1199 (1986). https://doi.org/10.1175/1520-0493(1986)114<1167:IO-CCOW>2.0.CO;2

Article  ADS  MATH  Google Scholar 

E. Zubko, K. Shmirko, A. Pavlov, W. B. Sun, G. L. Schuster, Y. X. Hu, S. Stamnes, A. Omar, R. R. Baize, M. P. McCormick, R. Loughman, J. A. Arnold, and G. Videen, “Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity,” Opt. Lett. 46, 2352–2355 (2021). https://doi.org/10.1364/OL.426584

Article  ADS  Google Scholar 

K. Sassen, J. Zhu, and S. Benson, “Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays,” Appl. Opt. 42, 332–341 (2003). https://doi.org/10.1364/AO.42.000332

Article  ADS  Google Scholar 

V. Noel and K. Sassen, “Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations,” J. Appl. Meteorol. 44, 653–664 (2005). https://doi.org/10.1175/JAM2223.1

Article  ADS  Google Scholar 

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German meteorological service autonomous raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012). https://doi.org/10.1364/AO.51.008111

Article  ADS  Google Scholar 

I. V. Tkachev, D. N. Timofeev, N. V. Kustova, and A. V. Konoshonkin, “Databank of Mueller matrices on atmospheric ice crystals of 10–100 mm for interpretation of ground-based and space-borne lidar data,” Opt. Atmos. Okeana 34 (3), 199–206 (2021). https://doi.org/10.15372/AOO20210306

Article  Google Scholar 

A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, D. N. Timofeev, I. V. Tkachev, E. Bakute, A. E. Babinovich, X. Zhu, and Z. Wang, “Properties of light backscattering on hollow hexagonal ice columns for optical models of cirrus clouds,” Atmos. Ocean. Opt. 37 (2), 252–261 (2024).

Article  Google Scholar 

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011). https://doi.org/10.1016/j.jqsrt.2011.02.015

Article  ADS  MATH  Google Scholar 

P. Yang and K. N. Liou, “Geometric-optics—integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). https://doi.org/10.1364/AO.35.006568

Article  ADS  MATH  Google Scholar 

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014). https://doi.org/10.1016/j.jqsrt.2014.04.030

Article  ADS  MATH  Google Scholar 

A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012). https://doi.org/10.1364/OE.20.028222

Article  ADS  Google Scholar 

A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38, 2881–2884 (2013). https://doi.org/10.1364/OL.38.002881

Article  ADS  MATH  Google Scholar 

A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013). https://doi.org/10.1364/OL.38.002881

Article  ADS  MATH  Google Scholar 

H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar,” Opt. Express 27, 36 587–36 600 (2019). https://doi.org/10.1364/OE.27.036587

Article  Google Scholar 

H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications,” Opt. Express 28, 29 178–29 191 (2020). https://doi.org/10.1364/OE.400510

Article  Google Scholar 

K. Masuda, H. Ishimoto, and Y. Mano, “Efficient method of computing a geometric optics integral for light scattering by nonspherical particles,” Pap. Meteorol. Geophys. 63, 15–19 (2012). https://doi.org/10.2467/mripapers.63.15

Article  MATH  Google Scholar 

R. P. Lawson, S. Woods, E. Jensen, E. Erfani, C. Gurganus, M. Gallagher, P. Connolly, J. Whiteway, A. J. Baran, P. May, A. Heymsfield, C. G. Schmitt, G. McFarquhar, J. Um, A. Protat, M. Bailey, S. Lance, A. Muehlbauer, J. Stith, A. Korolev, O. B. Toon, and M. Kramer, “A review of ice particle shapes in cirrus formed in situ and in anvils,” J. Geophys. Res.: Atmos. 124, 10 049–10 090 (2019). https://doi.org/10.1029/2018JD030122

Article  Google Scholar 

A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Exp 23, 24 557–24 571 (2015). https://doi.org/10.1364/OE.23.024557

Article  MATH  Google Scholar 

Z. Wang, V. Shishko, N. Kustova, A. Konoshonkin, D. Timofeev, C. Xie, D. Liu, and A. Borovoi, “Radar-lidar ratio for ice crystals of cirrus clouds,” Opt. Express 29, 4464–4474. https://doi.org/10.1364/OE.410942

V. Shishko, A. Konoshonkin, N. Kustova, D. Timofeev, and A. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27, 32 984–32 993 (2019). https://doi.org/10.1364/OE.27.032984

Article  Google Scholar 

W. Lin, L. Bi, F. Weng, Z. Li, and O. Dubovik, “Capability of superspheroids for modeling PARASOL observations under dusty-sky conditions,” J. Geophys. Res.: Atmos. 126 (1), 10 049–10 090 (2021). https://doi.org/10.1029/2020JD033310

Article  Google Scholar 

L. H. Sun, L. Bi, and B. Q. Yi, “The use of superspheroids as surrogates for modeling electromagnetic wave scattering by ice crystals,” Remote Sens. 13 (9), 1733 (2021). https://doi.org/10.3390/rs13091733

Article  ADS  MATH  Google Scholar 

C. G. Schmitt and A. J. Heymsfield, “On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus,” J. Atmos. Sci. 64, 4514–4519 (2007). https://doi.org/10.1175/2007JAS2317.1

Article  ADS  MATH  Google Scholar 

A. G. Borovoi, “Light scattering by large particles: Physical optics and the shadow-forming field,” in Light Scattering Reviews, Vol. 8, Ed, by A.A. Kokhanovsky (Springer-Praxis, Berlin, 2013).

A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25, 22 341–22 346 (2017). https://doi.org/10.1364/OE.25.022341

Article  Google Scholar 

M. Bailey and J. Hallett, “Growth rates and habits of ice crystals between –20 degrees and –70 degrees c,” J. Atmos. Sci. 61, 514–544 (2004). https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2

Article  ADS  MATH  Google Scholar 

C. Gil-Díaz, M. Sicard, A. Comerón, D. C. F. dos Santos Oliveira, C. Muñoz-Porcar, A. Rodríguez-Gómez, J. R. Lewis, E. J. Welton, and S. Lolli, “Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 5 years of lidar measurements,” Atmos. Meas. Tech. Discuss. 2023, 1–31 (2023). https://doi.org/10.5194/amt-17-1197-2024

Article  Google Scholar 

A. J. Heymsfield, M. Krämer, A. Luebke, P. Brown, D. J. Cziczo, C. Franklin, P. Lawson, U. Lohmann, G. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorol. Monographs 58, 2.1–2.6 (2017).

A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 29, 311–317 (1970). https://doi.org/10.1175/1520-0469(1970)027<0919:T-DOICI>2.0.CO;2

Article  ADS  MATH  Google Scholar 

A. J. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29, 1348–1357 (1972). https://doi.org/10.1175/1520-0469(1972)029<1348:I-CTV>2.0.CO;2

Article  ADS  MATH  Google Scholar 

A. J. Heymsfield, C. Schmitt, and A. Bansemer, “Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 to –86°C,” J. Atmos. Sci. 70 (12), 4123–4154 (2013). https://doi.org/10.1175/JAS-D-12-0124.1

Article  ADS  MATH  Google Scholar 

M. Saito and P. Yang, “Generalization of atmospheric nonspherical particle size: Interconversions of size distributions and optical equivalence,” J. Atmos. Sci. 79, 3333–3349 (2022). https://doi.org/10.1175/JAS-D-22-0086.1

Article  ADS  MATH  Google Scholar 

Comments (0)

No login
gif