Influence of the Exponent in the Power-Law Model of Turbulence Spectrum in a Supersonic Flow on Laser Beam Propagation

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Springer, New York, 1976).

Book  MATH  Google Scholar 

A. J. Smits and J.-P. Dussauge, Turbulent Shear Layers in Supersonic Flow (AIP Press, New York, 1996).

MATH  Google Scholar 

V. M. Boiko, A. V. Dostovalov, V. I. Zapryagaev, I. N. Kavun, N. P. Kiselev, and A. A. Pivovarov, “Study of the structure of supersonic non-isobaric jets,” Uchenye Zapiski TsAGI 41, 44–57 (2010).

MATH  Google Scholar 

V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26 (11), 932–941 (2013).

Google Scholar 

L. S. G. Kovasznay, “Turbulence in Supersonic Flow,” J. Aeronaut. Sci. 20 (10), 657–674 (1953).

Article  MATH  Google Scholar 

M. V. Morkovin, “Effects of compressibility on turbulent flows,” Mecanique De La Turbulence, Colloques Internationaux Du Centre National De La Recherche Scientifique, No. 108 (CNRS, Paris, 1962).

MATH  Google Scholar 

G. W. Sutton, Y. Hwang, J. Pond, and R. Snow, “Hypersonic interceptor aero-optics performance predictions,” J. Spacecraft Rockets 31 (4), 592–599 (1994).

Article  ADS  Google Scholar 

O. Pade, E. Frumker, and P. I. Rojt, “Optical distortions caused by propagation through turbulent shear layers,” Proc. SPIE—Int. Soc. Opt. Eng. 5237, 31–38 (2004). https://doi.org/10.1117/12.510945

M. Henriksson, H. Edefur, C. Fureby, O. Parmhed, S.-H. Peng, L. Sjoqvist, J. Tidstrom, and S. Wallin, “Simulation of laser propagation through jet plumes using computational fluid dynamics,” Proc. SPIE—Int. Soc. Opt. Eng. 8898, 88980 (2013). https://doi.org/10.1117/12.2028339

V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

MATH  Google Scholar 

J. Ryu and D. Livescu, “Turbulence structure behind the shock in canonical shock-vortical turbulence interaction,” J. Fluid Mech. 756, R1-1–R1-13 (2014). https://doi.org/10.1017/jfm.2014.477

R. Quadros, K. Sinha, and J. Larsson, “Turbulent energy flux generated by shock/homogeneous turbulence interaction,” J. Fluid Mech. 796, 113–157 (2016). https://doi.org/10.1017/jfm.2016.236

Article  ADS  MathSciNet  MATH  Google Scholar 

C. Huete, A. Cuadra, M. Vera, and J. Urzay, “Thermochemical effects on hypersonic shock waves interacting with weak turbulence,” Phys. Fluids 33, 086111-1–086111-16 (2021). https://doi.org/10.1063/5.0059948

Article  ADS  MATH  Google Scholar 

P. Thakare, V. Nair, and K. Sinha, “A weakly nonlinear framework to study shock-vorticity interaction,” J. Fluid Mech. 933, A48-1–A48-32 (2022). https://doi.org/10.2514/6.2022-4051

V. V. Nosov, P. G. Kovadlo, V. P. Lukin, and A. V. Torgaev, “Atmospheric coherent turbulence,” Atmos. Ocean. Opt. 26 (3), 201–206 (2013).

Article  Google Scholar 

V. V. Nosov, V. P. Lukin, P. G. Kovadlo, E. V. Nosov, and A. V. Torgaev, Optical Properties of Turbulence in Mountain Atmospheric Boundary Layer (Publishing House of SB RAS, Novosibirsk, 2016) [in Russian].

MATH  Google Scholar 

D. A. Marakasov, V. M. Sazanovich, A. A. Sukharev, and R. Sh. Tsvyk, “Intensity fluctuations of a laser beam propagating through a supersonic flooded jet,” Atmos. Ocean. Opt. 26, N 3. P. 233–240 (2013).

Article  Google Scholar 

A. A. Sukharev, “Aeroptical effects caused by supersonic airflow around an ogival body,” Atmos. Ocean. Opt. 32 (2), 207–212 (2019).

Article  MATH  Google Scholar 

F. R. Menter, “Review of the SST turbulence model experience from an industrial perspective,” Int. J. Comput. Fluid Dyn. 23 (4), 305–316 (2009). https://doi.org/10.1080/10618560902773387

Article  MATH  Google Scholar 

M. T. Schobeiri, Turbomachinery Flow Physics and Dynamic Performance (Springer, Berlin, Heidelberg, 2012).

Book  MATH  Google Scholar 

A. Yoshizawa, “Simplified statistical approach to complex turbulent flows and ensemble-mean compressible turbulence modeling,” Phys. Fluids 7 (12), 3105–3116 (1995). https://doi.org/10.1063/1.868754

Article  ADS  MATH  Google Scholar 

D. A. Marakasov, V. M. Sazanovich, R. Sh. Tsvyk, and A. N. Shesternin, “Transformation of spectra of refraction index fluctuations in axisymmetric supersonic jet with the increase in the distance from the nozzle,” MATEC Web Conf. 115, 02005–1 (2017). https://doi.org/10.1051/matecconf/201711502005

I. Toselli and S. Gladysz, “Equivalent refractive-index structure constant of non-kolmogorov turbulence: Comment,” Opt. Express 30, 40965–40967 (2022). https://doi.org/10.1364/OE.462690

Article  ADS  MATH  Google Scholar 

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2 (Academic Press, 1978).

MATH  Google Scholar 

Handbook on Special Functions with Formulas, Plots, and Mathematical Tables, Ed. by M. Abramovits and I. Stigan (Nauka, Moscow, 1979) [in Russian].

Google Scholar 

Y. Li, W. Zhu, X. Wu, and R. Rao, “Equivalent refractive-index structure constant of non-Kolmogorov turbulence,” Opt. Express 23 (18), 23004–23012 (2015). https://doi.org/10.1364/OE.462690

Article  ADS  MATH  Google Scholar 

J. H. Gladstone and T. P. Dale, “Researches on the refraction, dispersion, and sensitiveness of liquids,” Phil. Trans. R. Soc. London 153, 317–343 (1863).

Article  ADS  MATH  Google Scholar 

I. Toselli and S. Gladysz, “On the general equivalence of the fried parameter and coherence radius for non-Kolmogorov and oceanic turbulence,” OSA Continuum 2, 43–48 (2019).

Article  MATH  Google Scholar 

L. Tan, W. Du, J. Ma, S. Yu, and Q. Han, “Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence,” Opt. Express 18 (2), 451–462 (2010). https://doi.org/10.1364/OE.18.000451

Article  ADS  MATH  Google Scholar 

Comments (0)

No login
gif