G. S. Evtushenko, D. V. Shiyanov, and F. A. Gubarev, High-Repetition Rate Metal Vapor Lasers (Publishing House of Tomsk Politekhnical University, Tomsk, 2010) [in Russian].
A. N. Soldatov, E. L. Latush, G. D. Chebotarev, N. A. Yudin, A. V. Vasil’eva, Yu. P. Polunin, and O. O. Prutsakov, Pulse-Periodic Sr and K Lasers, Ed. by A.N. Soldatov and E.L. Latush (TML-Press, Tomsk, 2012) [in Russian].
I. V. Ponomarev, S. B. Topchii, Yu. N. Andrusenko, and L. D. Shakina, “Treatment of Nevus Spilus with dual-wavelength copper vapor laser,” Vestn. Dermatologii Venerologii 97 (4), 100–106 (2021). https://doi.org/10.25208/vdv1210
I. V. Ponomarev, Yu. N. Andrusenko, S. B. Topchii, and L. D. Shakina, “Copper vapor laser treatment of granuloma of the vermilion border of the lips arising as a complication after permanent make-up,” Vestn. Dermatologii Venerologii 97 (1), 41–45 (2021). https://doi.org/10.25208/vdv1191
A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Cu Vapor Lasers: Design, Characteristics, and Applications (Fizmatlit, Moscow, 2005) [in Russian].
J. F. Ready, Industrial Applications of Lasers (Elsevier, 1997).
D. E. Zakrevskii, A. I. Moshkunov, G. G. Rakhimov, and N. A. Yudin, “High-Power (up to 200 W) Cu vapor laser system for ALVIS,” in Proc. of the 5th All-Russian (International) Scientific Conference “Physical and Chemical Processes During Selection of Atoms and Molecules,” Zvenigorod, October 2–6, 2000 (Zvenigorod, 2000), p. 48 [in Russian].
P. A. Bokhan, V. V. Buchanov, D. E. Zakrevskii, M. A. Kazaryan, A. M. Prokhorov, and N. V. Fateev, Optical and Laser-Chemical Isotope Separation in Atomic Vapors (Fizmatlit, Moscow, 2010) [in Russian].
V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).
V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013,” Atmos. Ocean. Opt. 28 (3), 202–208 (2015).
A. E. Degtyarev and F. A. Gubarev, “Study of the lasing parameters of a CuBr laser during data transfer,” Vestn. Nauki Sibiri 14 (4), 9–15 (2014).
A. G. Grigor’yants, A. L. Gusev, M. A. Kazaryan, and N. A. Lyabin, “Lasers based on copper vapors for precision processing of parts for electronic equipment,” Al’ternativnaya Energetika Ekologiya 129 (7), 86–98 (2013).
P. G. Kuzmin, G. A. Shafeev, V. V. Voronov, R. V. Raspopov, E. A. Arianova, E. N. Trushina, I. V. Gmoshinskii, and S. A. Khotimchenko, “Bioavailable nanoparticles obtained in laser ablation of a selenium target in water, Quantum Electron. 42 (11), 1042–1044 (2012).
V. T. Karpukhin, M. A. Kazaryan, M. V. Protasov, M. M. Malikov, T. I. Borodina, G. E. Val’yano, and O. A. Gololobova, “Some physical properties of nanostructures of zirconium and molybdenum oxides obtained by laser ablation of metals in water,” Kratkie Soobshcheniya Fiz. FIAN, No. 6, 22–29 (2017).
M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Ocean. Opt. 29 (4), 376–380 (2016).
M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, V. O. Troitskii, and D. V. Shiyanov, “A bistatis laser monitor,” Tech. Phys. Lett. 42 (6), 632–634 (2016).
G. S. Evtushenko, V. Yu. Kashaev, N. V. Parshina, V. B. Sukhanov, V. V. Tatur, A. N. Trifonov, and V. F. Fedorov, “CuBr laser with a transistor switch,” Atmos. Ocean. Opt. 13 (3), 241–242 (2000).
V. B. Sukhanov and V. V. Tatur, “Performance characteristics of CuBr laser with transistor switch,” Izv. Tom. Politekhn. Univ. 312 (2), 108–110 (2008).
G. S. Evtushenko, G. G. Petrash, V. B. Sukhanov, and V. F. Fedorov, “CuBr laser with a pulse repetition rate up to 300 kHz,” Quantum Electron. 29 (9), 775–777 (1999). https://doi.org/10.1070/QE1999v029n09ABEH001570
I. S. Musorov, S. N. Torgaev, A. E. Kulagin, and G. S. Evtushenko, “300 KHz metal vapor brightness amplifier,” Opt. Quantum Electron. 55 (1), 52 (2023). https://doi.org/10.1007/s11082-022-04178-6
N. A. Yudin and N. N. Yudin, RF Patent no. 2618477 C1, Byull. Izobert., No. 13 (2017).
N. A. Yudin, RF Patent no. 2237955 C2, Byull. Izobert. (October 10, 2004).
A. S. Skripnichenko, A. N. Soldatov, N. A. Yudin, and LASERS Small enterprise, RF Patent no. 2082263 C1, Rossiya, Byull. Izobert. (June 20, 1997).
N. A. Yudin, Doctoral Dissertation in Mathematics and Physics (Tomsk State University, Tomsk, 2009).
H. Ghomi and H. Latifi, “Effect of an axial external magnetic field on the output power of a CuBr-Ne laser,” Jpn. J. Appl. Phys. 43 (2), 824–824 (2004). https://doi.org/10.1117/12.518072
Article ADS MATH Google Scholar
F. Ashtari Rahimi, S. Behrouzinia, B. Sajad, and M. Zand, “The effect of an axial external magnetic field on the output power of a small-bore CuBr laser,” Opt. Commun. 284, 1318–1321 (2011). https://doi.org/10.1016/j.optcom.2010.10.090
S. Behrouzinia, D. Salehinia, K. Khorasani, and M. Farahmandjou, “The continuous control of output power of a CuBr laser by a pulsed external magnetic field,” Opt. Commun. 436, 143–145 (2019). https://doi.org/10.1016/j.optcom.2018.12.016
E. B. Gordon, V. G. Egorov, and V. S. Pavlenko, “Excitation of metal vapor lasers by pulse trains,” Kvant. Elektron. 5 (2), 452–454 (1978).
M. V. Trigub and V. O. Troitskii, “Large-volume CuBr-laser with the possibility of continuous control for generation of energy,” Tech. Phys. Lett. 46, 393–396 (2020). https://doi.org/10.1134/S106378502004029X
Article ADS MATH Google Scholar
A. E. Kulagin and M. V. Trigub, “Kinetics of the CuBr vapor active medium under non-typical excitation conditions,” Appl. Phys. B 129 (5), 67 (2023). https://doi.org/10.1007/s00340-023-08010-1
Comments (0)