System for Metal Vapor Active Medium Excitation for Non-Typical Lasing Modes

G. S. Evtushenko, D. V. Shiyanov, and F. A. Gubarev, High-Repetition Rate Metal Vapor Lasers (Publishing House of Tomsk Politekhnical University, Tomsk, 2010) [in Russian].

Google Scholar 

A. N. Soldatov, E. L. Latush, G. D. Chebotarev, N. A. Yudin, A. V. Vasil’eva, Yu. P. Polunin, and O. O. Prutsakov, Pulse-Periodic Sr and K Lasers, Ed. by A.N. Soldatov and E.L. Latush (TML-Press, Tomsk, 2012) [in Russian].

Google Scholar 

I. V. Ponomarev, S. B. Topchii, Yu. N. Andrusenko, and L. D. Shakina, “Treatment of Nevus Spilus with dual-wavelength copper vapor laser,” Vestn. Dermatologii Venerologii 97 (4), 100–106 (2021). https://doi.org/10.25208/vdv1210

Article  Google Scholar 

I. V. Ponomarev, Yu. N. Andrusenko, S. B. Topchii, and L. D. Shakina, “Copper vapor laser treatment of granuloma of the vermilion border of the lips arising as a complication after permanent make-up,” Vestn. Dermatologii Venerologii 97 (1), 41–45 (2021). https://doi.org/10.25208/vdv1191

Article  Google Scholar 

A. G. Grigor’yants, M. A. Kazaryan, and N. A. Lyabin, Cu Vapor Lasers: Design, Characteristics, and Applications (Fizmatlit, Moscow, 2005) [in Russian].

MATH  Google Scholar 

J. F. Ready, Industrial Applications of Lasers (Elsevier, 1997).

MATH  Google Scholar 

D. E. Zakrevskii, A. I. Moshkunov, G. G. Rakhimov, and N. A. Yudin, “High-Power (up to 200 W) Cu vapor laser system for ALVIS,” in Proc. of the 5th All-Russian (International) Scientific Conference “Physical and Chemical Processes During Selection of Atoms and Molecules,” Zvenigorod, October 2–6, 2000 (Zvenigorod, 2000), p. 48 [in Russian].

P. A. Bokhan, V. V. Buchanov, D. E. Zakrevskii, M. A. Kazaryan, A. M. Prokhorov, and N. V. Fateev, Optical and Laser-Chemical Isotope Separation in Atomic Vapors (Fizmatlit, Moscow, 2010) [in Russian].

Google Scholar 

V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).

Article  Google Scholar 

V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013,” Atmos. Ocean. Opt. 28 (3), 202–208 (2015).

Article  Google Scholar 

A. E. Degtyarev and F. A. Gubarev, “Study of the lasing parameters of a CuBr laser during data transfer,” Vestn. Nauki Sibiri 14 (4), 9–15 (2014).

MATH  Google Scholar 

A. G. Grigor’yants, A. L. Gusev, M. A. Kazaryan, and N. A. Lyabin, “Lasers based on copper vapors for precision processing of parts for electronic equipment,” Al’ternativnaya Energetika Ekologiya 129 (7), 86–98 (2013).

Google Scholar 

P. G. Kuzmin, G. A. Shafeev, V. V. Voronov, R. V. Raspopov, E. A. Arianova, E. N. Trushina, I. V. Gmoshinskii, and S. A. Khotimchenko, “Bioavailable nanoparticles obtained in laser ablation of a selenium target in water, Quantum Electron. 42 (11), 1042–1044 (2012).

Article  Google Scholar 

V. T. Karpukhin, M. A. Kazaryan, M. V. Protasov, M. M. Malikov, T. I. Borodina, G. E. Val’yano, and O. A. Gololobova, “Some physical properties of nanostructures of zirconium and molybdenum oxides obtained by laser ablation of metals in water,” Kratkie Soobshcheniya Fiz. FIAN, No. 6, 22–29 (2017).

Google Scholar 

M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Ocean. Opt. 29 (4), 376–380 (2016).

Article  Google Scholar 

M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, V. O. Troitskii, and D. V. Shiyanov, “A bistatis laser monitor,” Tech. Phys. Lett. 42 (6), 632–634 (2016).

Article  ADS  Google Scholar 

G. S. Evtushenko, V. Yu. Kashaev, N. V. Parshina, V. B. Sukhanov, V. V. Tatur, A. N. Trifonov, and V. F. Fedorov, “CuBr laser with a transistor switch,” Atmos. Ocean. Opt. 13 (3), 241–242 (2000).

Google Scholar 

V. B. Sukhanov and V. V. Tatur, “Performance characteristics of CuBr laser with transistor switch,” Izv. Tom. Politekhn. Univ. 312 (2), 108–110 (2008).

MATH  Google Scholar 

G. S. Evtushenko, G. G. Petrash, V. B. Sukhanov, and V. F. Fedorov, “CuBr laser with a pulse repetition rate up to 300 kHz,” Quantum Electron. 29 (9), 775–777 (1999). https://doi.org/10.1070/QE1999v029n09ABEH001570

Article  ADS  Google Scholar 

I. S. Musorov, S. N. Torgaev, A. E. Kulagin, and G. S. Evtushenko, “300 KHz metal vapor brightness amplifier,” Opt. Quantum Electron. 55 (1), 52 (2023). https://doi.org/10.1007/s11082-022-04178-6

Article  Google Scholar 

N. A. Yudin and N. N. Yudin, RF Patent no. 2618477 C1, Byull. Izobert., No. 13 (2017).

N. A. Yudin, RF Patent no. 2237955 C2, Byull. Izobert. (October 10, 2004).

A. S. Skripnichenko, A. N. Soldatov, N. A. Yudin, and LASERS Small enterprise, RF Patent no. 2082263 C1, Rossiya, Byull. Izobert. (June 20, 1997).

N. A. Yudin, Doctoral Dissertation in Mathematics and Physics (Tomsk State University, Tomsk, 2009).

H. Ghomi and H. Latifi, “Effect of an axial external magnetic field on the output power of a CuBr-Ne laser,” Jpn. J. Appl. Phys. 43 (2), 824–824 (2004). https://doi.org/10.1117/12.518072

Article  ADS  MATH  Google Scholar 

F. Ashtari Rahimi, S. Behrouzinia, B. Sajad, and M. Zand, “The effect of an axial external magnetic field on the output power of a small-bore CuBr laser,” Opt. Commun. 284, 1318–1321 (2011). https://doi.org/10.1016/j.optcom.2010.10.090

Article  ADS  Google Scholar 

S. Behrouzinia, D. Salehinia, K. Khorasani, and M. Farahmandjou, “The continuous control of output power of a CuBr laser by a pulsed external magnetic field,” Opt. Commun. 436, 143–145 (2019). https://doi.org/10.1016/j.optcom.2018.12.016

Article  ADS  Google Scholar 

E. B. Gordon, V. G. Egorov, and V. S. Pavlenko, “Excitation of metal vapor lasers by pulse trains,” Kvant. Elektron. 5 (2), 452–454 (1978).

ADS  MATH  Google Scholar 

M. V. Trigub and V. O. Troitskii, “Large-volume CuBr-laser with the possibility of continuous control for generation of energy,” Tech. Phys. Lett. 46, 393–396 (2020). https://doi.org/10.1134/S106378502004029X

Article  ADS  MATH  Google Scholar 

A. E. Kulagin and M. V. Trigub, “Kinetics of the CuBr vapor active medium under non-typical excitation conditions,” Appl. Phys. B 129 (5), 67 (2023). https://doi.org/10.1007/s00340-023-08010-1

Article  ADS  MATH  Google Scholar 

Comments (0)

No login
gif