Emission and Sink of Greenhouse Gases in the Grassland Ecosystem of Southern Taiga of Western Siberia: Estimates of the Contribution of Soil Flux Component from Observations of 2023

J. Tollefson, “Earth’s hottest month: These charts show what happened in July and What comes next,” Nature 620 (7975), 703–704 (2023).

Article  ADS  Google Scholar 

“Summary for policymakers,” in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021), pp. 1–41.

M. Ramonet, Ph. Ciais, M. K. Sha, M. Steinbacher, and C. Sweeney, “CO2 in the atmosphere: Growth and trends since 1850,” in Oxford Research Encyclopedias, Climate Change (2023). https://doi.org/10.1093/acrefore/9780190228620.013.863

A. A. Kiselev and I. L. Karol’, Life with Methane (Voeikov Main Geophysical Observatory, 2019) [in Russian].

MATH  Google Scholar 

R. L. Thompson, L. Lassaletta, P. K. Patra, C. Wilson, K. C. Wells, A. Gressent, E. N. Koffi, M. P. Chipperfield, W. Winiwarter, E. A. Davidson, H. Tian, and J. G. Canadell, “Acceleration of global N2O emissions seen from two decades of atmospheric inversion,” Nature Clim. Change 9 (12), 993–998 (2019).

Article  ADS  Google Scholar 

A. M. Alferov, V. G. Blinov, M. L. Gitarskii, V. A. Grabar, D. G. Zamolodchikov, A. V. Zinchenko, N. P. Ivanova, V. M. Ivakhov, R. T. Karabanyu, D. V. Karelin, I. L. Kalyuzhnyi, F. V. Kashin, D. E. Konyushkov, V. N. Korotkov, V. A. Krovotyntsev, S. A. Lavrov, A. S. Marunich, N. N. Paramonova, A. A. Romanovskaya, A. A. Trunov, A. V. Shilkin, and A. K. Yuzbekov, Monitoring of Greenhouse Gas Fluxes in Bear-Bottom Systems (Amirit, Saratov, 2017) [in Russian].

Google Scholar 

O. A. Kuricheva, V. K. Avilov, A. V. Varlagin, M. L. Gitarskii, A. A. Dmitrichenko, E. A. Dyukarev, S. V. Zagirova, D. G. Zamolodchikov, V. I. Zyryanov, D. V. Karelin, S. V. Karsanaev, I. N. Kurganova, E. D. Lapshina, A. P. Maksimov, T. Kh. Maksimov, V. V. Mamkin, A. S. Marunich, M. N. Miglovets, O. A. Mikhailov, A. V. Panov, A. S. Prokushkin, N. V. Sidenko, A. V. Shilkin, and Yu. A. Kurbatova, “RUFLUX: The network of the eddy covariance sites in Russia,” Izv. Akad. Nauk. Ser. Geograf. 87 (4), 512–535 (2023). https://doi.org/10.31857/S2587556623040052

Article  Google Scholar 

M. V. Glagolev, “Inverse modelling method for the determination of the gas flux from the soil,” Dinamika Okruzhayushchei Sredy Global’nye Izmeneniya Klimata 1 (1), 17–36 (2010).

MATH  Google Scholar 

M. Riederer, A. Serafimovich, and T. Foken, “Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions,” Atmos. Meas. Tech. 7 (4), 1057–1064 (2014).

Article  MATH  Google Scholar 

X. Wang, C. Wang, and B. Bond-Lamberty, “Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis,” Agric. Forest Meteorol. 247, 93–103 (2017).

Article  ADS  MATH  Google Scholar 

P. Pavelka, M. Acosta, R. Kiese, N. Altimir, C. Brummer, P. Crill, E. Darenova, R. Fuß, B. Gielen, A. Graf, L. Klemedtsson, A. Lohila, B. Longdoz, A. Lindroth, M. Nilsson, S. M. Jimenez, L. Merbold, L. Montagnani, M. Peichl, M. Pihlatie, J. Pumpanen, P. S. Ortiz, H. Silvennoinen, U. Skiba, P. Vestin, P. Weslien, D. Janous, and W. Kutsch, “Standardisation of chamber technique for CO2, N2O, and CH4 fluxes measurements from terrestrial ecosystems,” Int. Agrophys 32 (12), 569–587 (2018).

Article  Google Scholar 

M. V. Glagolev, A. F. Sabrekov, and V. S. Kazantsev, Methods for Measuring Gas Exchange at the Soil/Atmosphere Interface (TGPU, Tomsk, 2010) [in Russian].

MATH  Google Scholar 

I. N. Kurganova, O. Yu. Goncharova, D. V. Il’yasov, D. V. Karelin, de Lopes, V. O. Gerenyu, G. V. Matyshak, M. N. Miglovets, E. V. Moshkina, A. F. Osipov, D. A. Khoroshaev, and I. N. Sharkov, Methodological Guide for Determining CO 2Emissions from Soils in Different Ecosystem Types ([B.I.], Pushchino, 2022) [in Russian].

J. Fiedler, R. Fuß, S. Glatzel, U. Hagemann, V. Huth, S. Jordan, G. Jurasinski, L. Kutzbach, M. Maier, K. Schafer, T. Weber, and D. Weymann, Best Practice Buiedeline. Measurement of Carbon Dioxide, Methane and Nitrous Oxide Fluxes Between Soil-Vegetation-Systems and the Atmosphere Using Non-Steady State Chambers (Deutsche Bodenkundliche Gesellschaft, 2022).

Google Scholar 

A. N. Zadorozhnii, M. V. Semenov, A. K. Khodzhaeva, and V. M. Semenov, “Production, consumption, and emission of greenhouse gases in the soil,” Agrokhimiya, No. 10, 75–92 (2010).

MATH  Google Scholar 

V. V. Antonovich, P. N. Antokhin, M. Yu. Arshinov, B. D. Belan, Yu. S. Balin, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, G. P. Kokhanenko, M. M. Novoselov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, D. E. Savkin, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, D. G. Chernov, V. P. Smargunov, E. P. Yausheva, J.-D. Paris, G. Ancellet, K. S. Law, J. Pelon, T. Machida, and M. Sasakawa, “Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs,” Proc. SPIE—Int. Soc. Opt. Eng. 10833, 108337 (2018).

B. D. Belan, M. Yu. Arshinov, D. K. Davydov, A. V. Kozlov, and G. A. Ivlev, RF Utility Patent no. 169 373 (March 15, 2017).

A. Rafalska, A. Walkiewicz, B. Osborne, K. Klumpp, and A. Bieganowski, “Variation in methane uptake by grassland soils in the context of climate change—a review of effects and mechanisms,” Sci. Total Environ. 871, 162127 (2023).

Article  Google Scholar 

C. J. Schubert and B. Wehrli, “Contribution of methane formation and methane oxidation to methane emission from freshwater systems,” in Handbook of Hydrocarbon and Lipid Microbiology, Ed. by A. Stams and D. Sousa (Springer, 2018), pp. 1–31.

MATH  Google Scholar 

V. F. Krapivin, V. S. Shalaev, and D. V. Burkov, “Simulation of Global Carbon and Methane Cycles,” Lesnoi Vestnik 19 (1), 170–178 (2015).

Google Scholar 

M. V. Glagolev and A. V. Smagin, “Quantitative assessment of methane emissions from swamps: From the soil profile to the region (on the 15th anniversary of research in Tomsk region),” Doklady Ekologicheskomu Epochvovedeniyu 3 (3), 75–114 (2006).

MATH  Google Scholar 

M. V. Glagolev and I. V. Filippov, “Inventories of methane absorption by soils,” Dinamika Okruzhayushchei Sredy Global’nye Izmeneniya Klimata 2 (2), 1–20 (2011).

MATH  Google Scholar 

M. Ge, A. Korrensalo, R. Laiho, L. Kohl, A. Lohila, M. Pihlatie, X. Li, A. M. Laine, J. Anttila, A. Putkinen, W. Wang, and M. Koskinen, “Plant-mediated CH4 exchange in wetlands: A review of mechanisms and measurement methods with implications for modeling,” Sci. Total Environm. 914 (2024). https://doi.org/10.1016/j.scitotenv.2023.169662

C. S. Potter, E. A. Davidson, and L. V. Verchot, “Estimation of global biogeochemical controls and seasonality in soil methane consumption,” Chemosphere 32 (11), 2219–2246 (1996).

Article  ADS  Google Scholar 

C. Kammann, L. Grunhage, H.-J. Jager, and G. Wachinger, “Methane fluxes from differentially managed grassland study plots: The important role of CH4 oxidation in grassland with a high potential for CH4 production,” Environ. Pollut. 115 (2), 261–273 (2001).

Article  Google Scholar 

F. Wang and J. Bettany, “Methane emission from canadian prairie and forest soils under short term flooding conditions,” Nutr. Cycl. Agroecosystem 49 (1), 197–202 (1997).

Article  Google Scholar 

B. Guenet, B. Gabrielle, C. Chenu, D. Arrouays, J. Balesdent, M. Bernoux, E. Bruni, J.-P. Caliman, R. Cardinael, S. Chen, P. Ciais, D. Desbois, J. Fouche, S. Frank, C. Henault, E. Lugato, V. Naipal, T. Nesme, M. Obersteiner, and F. Zhou, “Can N2O emissions offset the benefits from soil organic carbon storage?,” Glob. Change Biol. 27 (2), 237–256 (2020).

Article  ADS  Google Scholar 

N. J. Shurpali, U. Rannik, S. Jokinen, S. Lind, C. Biasi, I. Mammarella, O. Peltola, M. Pihlatie, N. Hyvonen, M. Raty, S. Haapanala, M. Zahniser, P. Virkajarvi, T. Vesala, and P. J. Martikainen, “Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions,” Nat. Sci. Report 6 (1), 25739 (2016).

ADS  Google Scholar 

J. B. Keane, R. Morrison, N. P. McNamara, and P. Ineson, “Real-time monitoring of greenhouse gas emissions with tall chambers reveals diurnal N2O variation and increased emissions of CO2 and N2O from miscanthus following compost addition,” GCB Bioenergy 11, 1456–1470 (2019).

Article  Google Scholar 

P. I. Araujo, J. M. Pineiro-Guerra, L. Yahdjian, M. M. Acreche, C. Alvarez, C. R. Alvarez, A. Costantini, J. Chalco Vera, J. De Telleria, T. Della Chiesa, N. A. Lewczuk, M. Petrasek, C. Piccinetti, L. Picone, S. I. Portela, G. Posse, M. Seijo, C. Videla, and G. Pineiro, “Drivers of N2O emissions from natural forests and grasslands differ in space and time,” Ecosystems 24 (2), 335–350 (2021).

Article  Google Scholar 

A. F. Sabrekov, M. V. Glagolev, I. A. Fastovets, B. A. Smolentsev, D. V. Il’yasov, and Sh. Sh. Maksyutov, “Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia,” Eurasian Soil Science 48 (8), 841–851 (2015).

Article  ADS  Google Scholar 

M. Yu. Arshinov, B. D. Belan, D. C. Davydov, A. V. Kozlov, and A. V. Fofonov, “Soil-atmosphere greenhouse gas fluxes in a background area in the Tomsk Region (Western Siberia),” Atmos. Ocean. Opt. 36 (2), 152–161 (2023).

Article  Google Scholar 

O. A. Krasnov, Sh. Maksyutov, D. K. Davydov, A. V. Fofonov, M. V. Glagolev, and G. Inoue, “Monitoring of methane and carbon dioxide emission from soil to atmosphere and soil parameters. Bakchar bog of Tomsk region (2014),” Opt. Atmos. Okeana 28 (7), 630–637 (2015). https://doi.org/10.15372/AOO20150707

Article  Google Scholar 

M. V. Glagolev, D. V. Ilyasov, I. E. Terentyeva, A. F. Sabrekov, O. A. Krasnov, and Sh. Sh. Maksyutov, “Methane and carbon dioxide fluxes in the waterlogged forests of Western Siberian southern and middle taiga subzones,” Opt. Atmos. Okeana 30 (4), 301–309 (2017). https://doi.org/10.15372/AOO20170407

Article  Google Scholar 

S. Serikova, O. S. Pokrovsky, P. Ala-Aho, V. Kazantsev, S. N. Kirpotin, S. G. Kopysov, I. V. Krickov, H. Laudon, R. M. Manasypov, L. S. Shirokova, C. Soulsby, D. Tetzlaff, and J. Karlsson, “High riverine CO2 emissions at the permafrost boundary of Western Siberia,” Nat. Geosci. 11 (11), 825–829 (2018).

Article  ADS  Google Scholar 

P. Mustamo, M. Maljanen, M. Hyvarinen, A.-K. Ronkanen, and B. Klove, “Respiration and emissions of methane and nitrous oxide from a boreal peatland complex comprising different land-use types,” Boreal Environ. Res. 21 (5-6), 405–426 (2016).

Google Scholar 

I. Feigenwinter, L. Hortnagl, M. J. Zeeman, W. Eugster, K. Fuchs, L. Merbold, and N. Buchmann, “Large inter-annual variation in carbon sink strength of a permanent grassland over 16 years: Impacts of management practices and climate,” Agricult. Forest Meteorol. 340, 109613 (2023).

Article  Google Scholar 

A. A. Bobrik, I. M. Ryzhova, O. Yu. Goncharova, G. V. Martyshak, M. I. Makarov, and D. A. Walker, “CO2 emission and organic carbon pools in soils of the northern taiga ecosystems of Western Siberia under different geocryological conditions,” Eurasian Soil Science 51 (6), 628–636 (2018).

Article  ADS  Google Scholar 

M. Glagolev, I. Kleptsova, I. Filippov, S. Maksyutov, and T. Machida, “Regional methane emission from West Siberia mire landscapes,” Environ. Res. Lett. 6 (4), 045214 (2011).

Article  ADS  Google Scholar 

A. F. Sabrekov, B. R. K. Runkle, M. V. Glagolev, I. E. Kleptsova, and S. S. Maksyutov, “Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling,” Environ. Res. Lett. 9 (4), 045008 (2014).

Article  ADS  Google Scholar 

A. F. Sabrekov, B. R. K. Runkle, M. V. Glagolev, I. E. Terentieva, V. M. Stepanenko, O. R. Kotsyurbenko, S. S. Maksyutov, and O. S. Pokrovsky, “Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls,” Biogeosci. 14 (15), 3715–3742 (2017).

Article  ADS  Google Scholar 

A. F. Sabrekov, I. V. Filippov, M. V. Glagolev, I. E. Terent’eva, D. V. Il’yasov, O. R. Koshorbe

Comments (0)

No login
gif