Statistical Simulation of Spaceborne Lidar Pulse Propagation in Cirrus Clouds Taking into Account Multiple Scattering

D. M. Winker, R. H. Couch, and M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84 (2), 164–180 (1996). https://doi.org/10.1109/5.482227

Article  MATH  Google Scholar 

V. E. Zuev, Yu. S. Balin, A. A. Tikhomirov, I. V. Znamenskii, and V. E. Mel’nikov, “Russian spaceboarn lidar BALKAN,” Kosmicheskaya Nauka Tekhnologiya 3 (1), 16–25 (1997).

ADS  Google Scholar 

M. A. Chanin, A. Hauchecorne, C. Malique, D. Nedeljkovic, J. -E. Blamont, M. Desbois, G. Tulinov, and V. Melnikov, “First results of the ALISSA lidar on board the MIR platform,” Comptes Rendus De L’Academie Des Sciences. Series IIA Earth Planet. Sci. 328 (6), 359–366 (1999).

Google Scholar 

Cloud-Aerosol Transport System (CATS). https://cats.gsfc.nasa.gov/. Cited November 8, 2023).

D. M. Winker, M. Vaughan, A. Omar, Y. Hu, K. Powell, Z. Liu, W. Hunt, and S. Young, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26 (11), 2310–2323 (2009).

Article  ADS  Google Scholar 

Physics of Clouds, Ed. by A.Kh. Khrgian (Gidrometeoizdat, Leningrad, 1961) [in Russian].

Google Scholar 

L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiant. Transfer 112 (9), 1492–1508 (2011). https://doi.org/10.1016/j.jqsrt.2011.02.015

Article  ADS  MATH  Google Scholar 

A. V. Konoshonkin, N. V. Kustova, A. G. Borovoi, Y. Grynko, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: comparison of the physical optics methods,” J. Quant. Spectrosc. Radiant. Transfer 182, 12–23 (2016).

Article  ADS  Google Scholar 

Y. S. Balin, S. V. Samoilova, M. M. Krekova, and D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38 (30), 6365–6373 (1999). https://doi.org/10.1364/ao.38.006365

Article  ADS  Google Scholar 

X. Wang, A. Boselli, L. D' Avino, R. Velotta, N. Spinelli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, “An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signal,” Appl. Phys. B 80, 609–615 (2005). https://doi.org/10.1007/s00340-005-1765-x

Article  ADS  Google Scholar 

A. B. Davis and A. Marshak, “Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts,” Rep. Prog. Phys. 73, 1–70 (2010). https://doi.org/10.1088/0034-4885/73/2/026801

Article  MATH  Google Scholar 

V. A. Korshunov, “Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere,” Atmos. Ocean. Opt. 35 (2), 151–157 (2022).

Article  MATH  Google Scholar 

L. R. Bissonnette and D. L. Hutt, “Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements,” Appl. Opt. 34 (30), 6959–6975 (1995). https://doi.org/10.1364/AO.34.006959

Article  ADS  MATH  Google Scholar 

M. M. Krekova, “Calculating the structure of spaceborne-lidar returns from the upper-level clouds,” Atmos. Ocean. Opt. 12 (4), 362–367 (1999).

Google Scholar 

S. M. Prigarin, “Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds,” Atmos. Ocean. Opt. 30 (1), 79–83 (2017).

Article  MATH  Google Scholar 

U. Oppel, “Hierarchy of models for lidar multipler scattering and its applications for simulation and analysis of spaceborne lidar returns,” Proc. SPIE—Int. Soc. Opt. Eng. 4341 (2000). https://doi.org/10.1117/12.411949

T. V. Russkova and V. A. Shishko, “Statistical simulation of laser pulse propagation in cirrus clouds accounting for multiple scattering,” Atmos. Ocean. Opt. 36 (4), 384–393 (2023).

Article  MATH  Google Scholar 

Elastic Lidar. Theory, Practice, and Analysis Methods, Ed. by V.A. Kovalev and W.E. Eichinger (Wiley-Interscience, Hoboken, 2004).

MATH  Google Scholar 

G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

MATH  Google Scholar 

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998). https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

Article  ADS  MATH  Google Scholar 

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Papers, No. 954 (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1986)

BI. D. ryukhanov, O. I. Kuchinskaya, E. V. Ni, M. S. Penzin, I. V. Zhivotenyuk, A. A. Doroshkevich, N. S. Kirillov, A. P. Stykon, V. V. Bryukhanova, and I. V. Samokhvalov, “Optical and geometrical characteristics of high-level clouds from the 2009–2023 data on laser polarization sensing in Tomsk,” Atmos. Ocean. Opt. 37 (3), 343–351 (2024).

Google Scholar 

V. Shishko, A. Konoshonkin, N. Kustova, A. Borovoi, D. Timofeev, “Light scattering by particles with arbitrary shape in the vicinity of the backward scattering direction within geometrical optics approximation,” EPJ Web Conference 237, 08012 (2020). https://doi.org/10.1051/epjconf/202023708012

P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region,” Appl. Opt. 44 (26), 5512–5523 (2005). https://doi.org/10.1364/AO.44.005512

Article  ADS  Google Scholar 

B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiant. Transfer 146, 123–139 (2014). https://doi.org/10.1016/j.jqsrt.2014.02.029

Article  ADS  Google Scholar 

G. Dai, S. Wu, W. Long, J. Liu, Y. Xie, K. Sun, F. Meng, X. Song, Z. Huang, and W. Chen, “Aerosols and clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1,” AMT 17 (7), 1879–1890 (2024). https://doi.org/10.5194/amt-17-1879-2024

Article  ADS  Google Scholar 

X. Wang, X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li, “Earth science applications of ICESat/GLAS: A review,” Remote Sens. 32 (23), 8837–8864 (2011). https://doi.org/10.1080/01431161.2010.547533

Article  MATH  Google Scholar 

A. Heliere R. Gelsthorpe, L. Le Hors, and Y. Toulemont, “ATLID, the Atmospheric lidar on board the Earth-Care Satellite,” Proc. SPIE—Int. Soc. Opt. Eng. 10564 (2017). https://doi.org/10.1117/12.2309095

S. Daisuke, N. T. Trung, M. Rei, S. Yoshito, I. Tadashi, and K. Toshiyoshi, “Progress of the ISS based vegetation LiDAR mission, MOLI—Japan’s first space-based lidar,” in Proc. of IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA (2020), pp. 3467–3470.

ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Layer Characteristics, Version 6. https://nsidc.org/sites/default/files/documents/user-guide/atl09-v006-userguide.pdf. Cited November 8, 2023.

Comments (0)

No login
gif