Determination of Coefficients of Water Vapor Absorption Line Center Shifting by Nitrogen and Oxygen Pressure in the Visible Range

V. I. Starikov, “Analysis and analytical modeling of air, N2, O2 and CO2 broadening coefficients of water vapor lines in the 380–26 000 cm–1 spectral range,” Opt. Spectrosc. 130 (9), 1316–1326 (2022). https://doi.org/10.21883/EOS.2022.09.54820.3135-22

Article  MATH  Google Scholar 

B. E. Grossmann and E. V. Browell, “Water vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). https://doi.org/10.1016/0022-2852(89)90019-2

Article  ADS  Google Scholar 

C. J. Tsao and B. Curnutte, “Line-widths of pressure-broadened spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 2 (1), 41–91 (1962).

Article  ADS  MATH  Google Scholar 

R. P. Leavitt, “Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach,” J. Chem. Phys. 73, 5432–5450 (1980).

Article  ADS  MATH  Google Scholar 

A. Bauer, M. Godon, M. Keddar, J. M. Hartmann, J. Bonamy, and D. Robert, “Temperature and perturber dependences of water vapor 380 GHz-line-broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531–539 (1987).

Article  ADS  Google Scholar 

C. Delaye, J.-M. Hartmann, and J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).

Article  ADS  Google Scholar 

S. L. Shostak and J. S. Muenter, “The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function,” J. Chem. Phys. 94, 5883–5890 (1991). https://doi.org/10.1063/1.460472

Article  ADS  MATH  Google Scholar 

V. I. Starikov, T. M. Petrova, A. M. Solodov, A. A. Solodov, and A. S. Dudaryonok, “Study of the H2O dipole moment and polarizability vibrational dependence by the analysis of rovibrational line shifts,” Spectroch. Acta, Part A 210, 275–280 (2019). https://doi.org/10.1016/j.saa2018.11.032

Article  MATH  Google Scholar 

A. A. Radtsik and B. M. Smirnov, Atomic and Molecular Physics Handbook (Atomizdat, Moscow, 1980) [in Russian].

MATH  Google Scholar 

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transfer 109, 2303–2314 (2008). https://doi.org/10.1016/j.jqsrt.2008.03.005

Article  ADS  Google Scholar 

R. S. Eng and A. W. Mant, “Tunable diode laser measurement of water vapor line parameters in the 10- to 15-μm spectral region,” J. Mol. Spectrosc. 74, 388–399 (1979).

Article  ADS  Google Scholar 

J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, and D. Robert, “Collisinal broadening of rotation-vibration lines of asymmetric-top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range,” J. Chem. Phys. 86, 144–155 (1987).

Article  ADS  Google Scholar 

J. A. Mucha, “Tunable diode laser measurements of water vapor line parameters in the 6-μm spectral region,” Appl. Spectrosc. 36, 141–147 (1982).

Article  ADS  MATH  Google Scholar 

V. I. Serdyukov, L. N. Sinitsa, S. S. Vasilchenko, N. N. Lavrentieva, A. S. Dudaryonok, and A. P. Scherbakov, “Study H2O line broadening and shifting by N2 pressure in the 16.600–17.060 cm−1 region using FT-spectrometer with LED source,” J. Quant. Spectros. Radiat. Transfer 219, 213–223 (2018). https://doi.org/10.1016/j.jqsrt.2018.08.014

Article  ADS  Google Scholar 

V. I. Serdyukov, L. N. Sinitsa, A. S. Dudaryonok, and N. N. Lavrentieva, “Measurements and theoretical estimation of N2-broadening and -shifting coefficients of the water vapor spectral lines in the 22.330–22.590 cm−1 region,” J. Quant. Spectrosc. Radiat. Transfer 272, 107763 (2021). https://doi.org/10.1016/j.jqsrt.2021.107763

Article  Google Scholar 

T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Measurements of water vapor line shifts in the 8650–9020 cm−1 region caused by pressure of atmospheric gases,” Atmos. Ocean. Opt. 23 (6), 455–461 (2010).

Article  MATH  Google Scholar 

A. Bandyopadhyay, B. Ray, P. N. Ghosh, D. L. Niles, and R. R. Gamache, “Diode laser spectroscopic measurements and theoretical calculations of line parameters of nitrogen-broadened water vapor overtone transitions in the 818–834 nm wavelength region,” J. Mol. Spectrosc. 242, 10–16 (2007). https://doi.org/10.1016/j.jms.2006.12.008

Article  ADS  Google Scholar 

E. V. Browell, B. E. Grossman, A. D. Bykov, V. A. Kapitanov, V. V. Lazarev, Yu. N. Ponomarev, L. N. Sinitsa, E. A. Korotchenko, V. N. Stroinova, and B. A. Tikhomirov, “Investigation of H2O absorption line shifts caused by air pressure in the visible,” Atmos. Ocean. Opt. 3 (7), 617–630 (1990).

Google Scholar 

V. I. Serdyukov, L. N. Sinitsa, N. N. Lavrentieva, and A. S. Dudaryonok, “Measurements of N2-broadening and -shifting parameters of the water vapor spectral lines in the 19,560–19,920 cm−1 region using FT-spectrometer with LED source,” J. Quant. Spectrosc. Radiat. Transfer 234, 47–54 (2019). https://doi.org/10.1016/j.jqsrt.2019.06.003

Article  ADS  Google Scholar 

Comments (0)

No login
gif