C. Bi, C. Qing, X. Qian, W. Zhu, T. Luo, X. Li, S. Cui, and N. Weng, “Astroclimatic parameters characterization at Lenghu site with ERA5 products,” Mon. Not. R. Astron. Soc. 527, 4616–4631 (2024). https://doi.org/10.1093/mnras/stad3414
L. A. Bol’basova and V. P. Lukin, “Analytical models of vertical profile of the structure parameter of atmospheric refractive index for adaptive optics,” Opt. Atmos. Okeana 29 (11), 918–925 (2016). https://doi.org/10.15372/AOO20161104
M. Langlois, G. Moretto, K. Richards, S. Hegwer, and T. Rimmele, “Solar multi-conjugate adaptive optics at the Dunn Solar Telescope: Preliminary results,” Proc. SPIE—Int. Soc. Opt. Eng. 5490 (2004). https://doi.org/10.1051/ao4elt/201008002
D. Schmidt, N. Gorceix, P. R. Goode, J. Marino, and T. Rimmele, F. Woger, X. Zhang, F. Rigaut, and O. Luhe, “Clear widens the field for observations of the Sun with multi-conjugate adaptive optics,” Astron. Astrophys. 597, L8 (2017). https://doi.org/10.1051/0004-6361/201629970
L. Zhong, L. Zhang, Z. Shi, Y. Tian, Y. Guo, L. Kong, X. Rao, H. Bao, L. Zhu, and C. Rao, “Wide field-of-view, high-resolution solar observation in combination with ground layer adaptive optics and speckle imaging,” Astron. Astrophys. 637, A99 (2020). https://doi.org/10.1051/0004-6361/201935109
D. Schmidt, T. Berkefeld, F. Heidecke, O. Luhe, and D. Soltau, “Testbed for the multi-conjugate adaptive optics system of the solar telescope GREGOR,” Proc. SPIE—Int. Soc. Opt. Eng. 74390X (2009). https://doi.org/10.1117/12.829886
T. Butterley, R. Wilson, and M. Sarazin, “Determination of the profile of atmospheric optical turbulence strength from SLODAR data,” Mon. Not. R. Astron. Soc. 369 (2), 835–845 (2006). https://doi.org/10.1111/j.1365-2966.2006.10337.x
Article ADS MATH Google Scholar
M. Goodwin, C. Jenkins, and A. Lambert, “Improved detection of atmospheric turbulence with SLODAR,” Opt. Express 15 (22), 14 844–14 860 (2007). https://doi.org/10.1364/OE.15.014844
R. W. Wilson, “SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337 (1), 103–108 (2002). https://doi.org/10.1046/j.1365-8711.2002.05847.x
Article ADS MATH Google Scholar
J. Osborn, T. Butterley, D. Fohring, and R. Wilson, “Characterizing atmospheric optical turbulence using Stereo-SCIDAR,” J. Phys.: Conf. Ser. 595 (2015). https://doi.org/10.1088/1742-6596/595/1/012022
S. A. Potanin, M. V. Kornilov, A. D. Savvin, B. S. Safonov, M. A. Ibragimov, E. A. Kopylov, M. A. Nalivkin, V. E. Shmagin, L. X. Huy, and N. T. Thao, “A facility for the study of atmospheric parameters based on the Shack–Hartmann sensor,” Astrophys. Bull. 77 (2), 214–221 (2022). https://doi.org/10.1134/S1990341322020067
Z. Wang, L. Zhang, L. Kong, H. Bao, Y. Guo, X. Rao, L. Zhong, L. Zhu, and C. Rao, “A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles,” Mon. Not. R. Astron. Soc. 478 (2), 1459–1467 (2018).
A. Y. Shikhovtsev, A. V. Kiselev, P. G. Kovadlo, D. Yu. Kolobov, V. E. Tomin, and V. P. Lukin, “Method for estimating the altitudes of atmospheric layers with strong turbulence,” Atmos. Ocean. Opt. 33 (3), 295–301 (2020).
A. Y. Shikhovtsev, P. G. Kovadlo, A. V. Kiselev, D. Y. Kolobov, V. P. Lukin, I. V. Russkikh, and M. Y. Shikhovtsev, “Modified method to detect the turbulent layers in the atmospheric boundary layer for the Large Solar Vacuum Telescope,” Atmosphere 12, 159 (2021). https://doi.org/10.3390/atmos12020159
Article ADS MATH Google Scholar
V. I. Tatarskii, Wave Propagation in Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].
J. Maire, A. Ziad, J. Borgnino, and F. Martin, “Measurements of profiles of the wavefront outer scale using observations of the limb of the Moon,” Mon. Not. R. Astron. Soc. 377, 1236–1244 (2007). https://doi.org/10.1111/j.1365-2966.2007.11681.x
E. Dewan, R. Good, R. Beland, and J. Brown, A model \(C_^\) (Optical Turbulence) Profiles Using Radiosonde Data. No. 1121 (Phillips Laboratory, MA, 1993).
A. van de Boer, A. F. Moene, A. Graf, C. Simmer, and A. A. M. Holtslag, “Estimation of the refractive index structure parameter from single-level daytime routine weather data,” Appl. Opt. 53, 5944–5960 (2014). https://doi.org/10.1364/AO.53.005944
Article ADS MATH Google Scholar
S. Wang, Q. Wang, B. J. Wauer, and Q. Jiang, “Computing refractive index structure parameter in a numerical weather prediction model,” Geophys. Rev. Lett. 47, 17 (2020). https://doi.org/10.1029/2020GL089168
A. Shikhovtsev, P. Kovadlo, and V. Lukin, “Temporal variations of the turbulence profiles at the Sayan Solar Observatory site,” Atmosphere 10 (9), 499 (2019). https://doi.org/10.3390/atmos10090499
Article ADS MATH Google Scholar
N. N. Botygina, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, and V. P. Lukin, “Development of elements for an adaptive optics system for solar telescope,” J. Appl. Remote Sens. 12 (4), 042403 (2018). https://doi.org/10.1117/1.JRS.12.042403
L. V. Antoshkin, N. N. Botygina, L. A. Bolbasova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P. G. Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Ocean. Opt. 30 (3), 291–299 (2017).
A. Abahamid, J. Vernin, Z. Benkhaldoun, A. Jabiri, M. Azouit, and A. Agabi, “Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons,” Astron. Astrophys. 422, 1123–1127 (2004). https://doi.org/10.1051/0004-6361:20040215
V. P. Lukin, “Outer scale of turbulence and its influence on fluctuations of optical waves,” Phys.-Uspekhi 64 (3), 280–303 (2021). https://doi.org/10.3367/UFNr.2020.10.038849
Article ADS MATH Google Scholar
A. S. Koshkarov and G. N. Mal’tsev, “Study of the conditions for anisoplanatism of ground-based optical systems with the use of models of the atmosphere,” Trudy Voenno-Kosmicheskoi Akademii im. A.F. Mozhaiskogo 689, 52–59 (2023).
Y. V. Molozhnikova, M. Y. Shikhovtsev, O. G. Netsvetaeva, and T. V. Khodzher, “Ecological zoning of the baikal basin based on the results of chemical analysis of the composition of atmospheric precipitation accumulated in the snow cover,” Appl. Sci. 13 (2023). https://doi.org/10.3390/app13148171
Comments (0)