J. A. Chalmers, Atmospheric Electricity (Pergamon Press, London, Paris, New Yprk, 1957).
N. V. Krasnogorskaya, Lower Atmospheric Electricity and Methods for Its Measurements (Gidrometizdat, Leningrad, 1972) [in Russian].
H. Israel, Atmospheric Electricity, Vol. 2, Fields, Charges, Currents (Israel Program for Scientific Translations, Jerusalem, 1973).
R. G. Harrison, “The Carnegie curve,” Surv. Geophys. 34, 209–232 (2013). https://doi.org/10.1007/s10712-012-9210-2
Article ADS MATH Google Scholar
K. Mezuman, C. Price, and E. Galanti, “On the spatial and temporal distribution of global thunderstorm cells,” Environ. Res. Lett. 9 (12), 124023 (2014). https://doi.org/10.1088/1748-9326/9/12/124023
Article ADS MATH Google Scholar
S. A. Pulinets and G. Ya. Khachikyan, “Unitary variation in the seismic regime of the Earth: Carnegie-curve matching,” Geomagn. Aeron. (Engl. Transl.) 60 (6), 787–792 (2020).
R. Yaniv, Y. Yair, C. Price, and Sh. Katz, “Local and global impacts on the fair-weather electric field in Israel,” Atmos. Res. 172–173, 119–125 (2016). https://doi.org/10.1016/j.atmosres.2015.12.025
S. V. Anisimov, S. V. Galichenko, and E. A. Mareev, “Electrodynamic properties and height of atmospheric convective boundary layer,” Atmos. Res. 194, 119–129 (2017).
N. Ahmad, S. F. Gurmani, A. Basit, M. A. Shah, and T. Iqbal, “Impact of local and global factors and meteorological parameters in temporal variation of atmospheric potential gradient,” Adv. Space Res. 67, 2491–2503 (2021). https://doi.org/10.1016/j.asr.2021.01.046
Article ADS MATH Google Scholar
A. R. Adzhiev and G. V. Kupovykh, “Measurements of the atmospheric electric field under high-mountain conditions in the vicinity of mt. Elbrus,” Izv., Atmos. Ocean. Phys. 51 (6), 633–638 (2015).
Yu. A. Pkhalagov, V. N. Uzhegov, I. I. Ippolitov, and M. V. Vinarskii, “Investigation of relations between optical and electric characteristics of the surface atmosphere,” Atmos. Ocean. Opt. 18 (5–6), 373–377 (2005).
R. G. Harrison, “Aerosol-induced correlation between visibility and atmospheric electricity,” J. Aerosol Sci. 52, 121–126 (2012).https://doi.org/10.1016/j.jaerosci.2012.04.011
Article ADS MATH Google Scholar
P. M. Nagorskii, K. N. Pustovalov, and S. V. Smirnov, “Smoke plumes from wildfires and the electrical state of the surface air layer,” Atmos. Ocean. Opt. 35 (4), 387–393 (2022).
I. B. Popov, “Features of variations in electric conductivity of air near St. Petersburg,” Trudy GGO, No. 563, 149–165 (2011).
B. G. Zainetdinov, “Observation of electric parameters of the surface air layer in polar region,” Trudy GGO, No. 588, 47–61 (2018).
A. J. Bennett and R. G. Harrison, “Atmospheric electricity in different weather conditions,” Weather 62, 277–283 (2007). https://doi.org/10.1002/wea.97
Article ADS MATH Google Scholar
I. B. Popov, “Statistical estimates of the effects of different meteorological phenomena on the gradient of the electrical potential of the atmosphere,” Trudy GGO, No. 558, 152–161 (2008).
A. A. Toropov, V. I. Kozlov, V. A. Mullayarov, and S. A. Starodubtsev, “Experimental observations of strengthening the neutron flux during negative lightning discharges of thunderclouds with tripolar configuration,” J. Atmos. Sol.-Terr. Phys. 94, 13–18 (2013). https://doi.org/10.1016/j.jastp.2012.12.020
S. E. Smirnov, G. A. Mikhailova, and O. V. Kapustina, “Variations in the quasi-static electric field in the near-Earth’s atmosphere during geomagnetic storms in November 2004,” Geomagn. Aeron. (Engl. Transl.) 53 (4), 502–514 (2013).
V. V. Klimenko, E. A. Mareev, M. V. Shatalina, Yu. V. Shlyugaev, V. V. Sokolov, A. A. Bulatov, and V. P. Denisov, “On statistical characteristics of electric fields of the thunderstorm clouds in the atmosphere,” Radiophys. Quantum Electron. 56 (11–12), 778–787 (2013).
K. N. Pustovalov and P. M. Nagorskii, “Comparative analysis of electric state of surface air layer during passage of cumulonimbus clouds in warm and cold seasons,” Atmos. Ocean. Opt. 31 (6), 685–689 (2018).
S. Katz, Y. Yair, C. Price, R. Yaniv, I. Silber, B. Lynn, and B. Ziv, “Electrical properties of the 8–12th September, 2015 massive dust outbreak over the Levant,” Atmos. Res. 201, 218–225 (2018). https://doi.org/10.1016/j.atmosres.2017.11.004
P. P. Firstov, E. I. Malkin, R. R. Akbashev, G. I. Druzhin, N. V. Cherneva, R. H. Holzworth, V. N. Uvarov, and I. E. Stasiy, “Registration of atmospheric-electric effects from volcanic clouds on the Kamchatka Peninsula (Russia),” Atmosphere 11, 634 (2020). https://doi.org/10.3390/atmos11060634
S. V. Anisimov, N. M. Shikhova, and N. G. Kleimenova, “Response of a magnetospheric storm in the atmospheric electric field of the midlatitudes,” Geomagn. Aeron. (Engl. Transl.) 61 (2), 180–190 (2021).
Y. Yair and R. Yaniv, “The effects of fog on the atmospheric electrical field close to the surface,” Atmosphere 14 (3), 549 (2023). https://doi.org/10.3390/atmos14030549
Article ADS MATH Google Scholar
V. V. Adushkin, Yu. S. Rybnov, S. A. Ryabova, A. A. Spivak, and A. V. Tikhonova, “Geophysical effects of a series of strong earthquakes in Turkey of February 6, 2023,” Fizika Zemli, No. 6, 142–152 (2023).
K. Pustovalov, P. Nagorskiy, M. Oglezneva, and S. Smirnov, “The electric field of the undisturbed atmosphere in the south of Western Siberia: A case study on Tomsk,” Atmosphere 13 (4), 614 (2022). https://doi.org/10.3390/atmos13040614
L. I. Kizhner and N. Yu. Seraya, “Wind measurements in Tomsk in the early 21st century,” Trudy GGO, No. 576, 102–113 (2015).
E. P. Yausheva, V. A. Gladkikh, A. P. Kamardin, and V. P. Shmargunov, “Extreme events of aerosol pollution of the atmosphere in winter in Tomsk Akademgorodok,” Atmos. Ocean. Opt. 36 (S1), 65–S73 (2023).
Comments (0)