P. F. Bustos, R. Holzlohner, S. Rochester, D. Bonaccini, J. Hellemeier, and D. Budker, “Frequency chirped continuous-wave sodium laser guide stars: Modeling and optimization,” J. Opt. Soc. Am. B 37, 1208–1218 (2020). https://doi.org/10.1364/JOSAB.389007
J. Hellemeier, M. Enderlein, M. Hager, CaliaD. Bonaccini, R. L. Johnson, F. Lison, M. O. Byrd, L. A. Kann, M. Centrone, and P. Hickson, “Laser guide star return-flux gain from frequency chirping,” Mon. Not. Roy. Astron. Soc. 511 (3), 4660–4668 (2022). https://doi.org/10.1093/mnras/stac343
S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlohner, and L. Wang, “Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project,” J. Opt. Soc. Am. B 29, 2176–2188 (2012). https://doi.org/10.1364/JOSAB.29.002176
R. Holzlohner, D. Bonaccini, D. Bello, D. Budker, M. Centrone, I. Guidolin, W. Hackenberg, S. Lewis, G. Lombardi, I. Montilla, F. Pedichini, F. Pedreros Bustos, T. Pfrommer, M. Reyes Garcia Talavera, and S. Rochester, “Comparison between observation and simulation of sodium LGS return flux with a 20W CW laser on Tenerife,” Proc. SPIE—Int. Soc. Opt. Eng. 9909, 99095E-8 (2016). https://doi.org/10.1117/12.2233072
V. V. Kleymyonov, E. V. Novikova, and M. I. Oleynikov, “On the choice of the aperture diameter of the probe laser in ground-based adaptive optoelectronic systems in the formation of a sodium reference star,” Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki Optiki 21 (1), 24–30 (2021). https://doi.org/10.17586/2226-1494-2021-21-1-24-30
N. Martinez, C. D’Orgeville, D. Grosse, M. Lingham, J. Webb, M. Copeland, A. Galla, J. Hart, I. Price, W. Schofield, E. Thorn, C. Smith, Y. Gao, Y. Wang, M. Blundell, A. Chan, A. Gray, G. Fetzer, and S. Rako, “Debris collision mitigation from the ground using laser guide star adaptive optics at Mount Stromlo Observatory,” J. Space Saf. Eng. 9 (1), 106–113 (2022). https://doi.org/10.1016/j.jsse.2021.10.007
V. V. Kleymionov, I. Yu. Vozmishchev, and E. V. Novikova, “Effectiveness of the application of a monostatic formation scheme of a laser guide star,” J. Opt. Technol. 89 (11), 656–660 (2022). https://doi.org/10.1364/JOT.89.000656
R.-T. Wang, H.-Y. Li, L. Feng, M. Li, Q. Bian, J.-W. Zuo, K. Jin, C. Wang, Y. Liang, and M. Wang, “First sodium laser guide star asterism launching platform in China on the 1.8 m telescope at Gaomeigu Observatory,” Publ. Astron. Soc. Pacific 135 (1045), 034502 (2023). https://doi.org/10.1088/1538-3873/acbe68
Article ADS MATH Google Scholar
L. A. Bol’basova, S. A. Ermakov, and V. P. Lukin, “Simulation of return flux of sodium LGS generated by polarized light for astronomical observatories of the North Caucasus,” Atmos. Ocean. Opt. 36 (S1), S94–S100 (2023).
X. Huo, Y. Qi, Y. Zhang, B. Chen, Z. Bai, J. Ding, Y. Wang, and Z. Lu, “Research development of 589 nm laser for sodium laser guide stars,” Opt. Laser. Eng 134, 106 207–10 627 (2020). https://doi.org/10.1016/j.optlaseng.2020.106207
Y. Cai, J. Ding, Z. Bai, Y. Qi, Y. Wang, and Z. Lu, “Recent progress in yellow laser: Principles, status and perspectives,” Opt. Laser. Eng 152, 108 113–108 130 (2022). https://doi.org/10.1016/j.optlastec.2022.108113
P. Jiang, X. Ding, J. Guo, H. Zhang, H. Qi, Y. Shang, Z. Song, W. Wang, C. Wang, Gu. Liu, C. Yao, J. Ni, and J. Yao, “Research progress of crystalline raman yellow lasers,” Opt. Laser Technol. 169, 1–15 (2024). https://doi.org/10.1016/j.optlastec.2023.110072
J.-P. Pique and S. Farinotti, “Efficient modeless laser for a mesospheric sodium laser guide star,” J. Opt. Soc. Am. B 20, 2093–2101 (2003). https://doi.org/10.1364/JOSAB.20.002093
Article ADS MATH Google Scholar
X. Liu, X. Qian, R. He, D. Liu, C. Cui, C. Fan, and H. Yuan, “Effects of linewidth broadening method on recoil of sodium laser guide star,” Atmosphere 12, 1315–1 (2021). https://doi.org/10.3390/atmos12101315
Article ADS MATH Google Scholar
R. Holzlohner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, “Optimization of CW sodium laser guide star efficiency,” Astron. Astrophys. 510 (2010). https://doi.org/10.1051/0004-6361/200913108
S. Rochester, Atomic Density Matrix Package for Mathematica, LGSBloch Package for Mathematica. https://rochesterscientific.com/ADM/. Cited December 20, 2023.
R. Rampy, D. Gavel, S. M. Rochester, and R. Holzlohner, “Toward optimization of pulsed sodium laser guide stars,” J. Opt. Soc. Am. B 32, 2425–2434 (2015). https://doi.org/10.1364/JOSAB.32.002425
Article ADS MATH Google Scholar
GOST R ISO 13695-2010 Optics and Photonics. Lasers and Laser Setups (systems). Techniques for Measuring Spectral Characteristics of Lasers (Standartinform, Moscow, 2011) [in Russian]
P. W. Milonni, R. Q. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998). https://doi.org/10.1364/JOSAA.15.000217
N. Moussaoui, R. Holzlohner, W. Hackenberg, and D. Bonaccini Calia, “Dependence of sodium laser guide star photon return on the geomagnetic field,” Astron. Astrophys. 501 (2), 793–799 (2009). https://doi.org/10.1051/0004-6361/200811411
L. Li, H. Wang, W. Hua, Y. Ning, and X. Xu, “Fluoreenhancing mechanism of optical repumping in sodium atoms for brighter laser guide star,” Opt. Express 24, 6976–6984 (2016). https://doi.org/10.1364/OE.24.006976
Comments (0)