Wang L, Wang Y, Ye D, Liu Q (2020) Erratum to “A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence” [International Journal of Antimicrobial Agents 55/6 (2020) 105948]. Int J Antimicrob Agents 56:106137. https://doi.org/10.1016/j.ijantimicag.2020.106137
Article CAS PubMed PubMed Central Google Scholar
Ip JD, Wing-Ho Chu A, Chan WM, Cheuk-Ying Leung R, Umer Abdullah SM, Sun Y, Kai-Wang To K (2023) Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. EBiomedicine 91:104559. https://doi.org/10.1016/j.ebiom.2023.104559
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J (2023) Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. ACS Cent Sci 9:1658–1669. https://doi.org/10.1021/acscentsci.3c00538
Article CAS PubMed PubMed Central Google Scholar
Stevens LJ, Pruijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, George AS, Hughes TM, Lu X, Li J, Perry JK, Porter DP, Cihlar T, Sheahan TP, Baric RS, Gotte M, Denison MR (2022) Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med 14:eabo0718. https://doi.org/10.1126/scitranslmed.abo0718
Article CAS PubMed Google Scholar
Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (2016) Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 15:327–347. https://doi.org/10.1038/nrd.2015.37
Article CAS PubMed PubMed Central Google Scholar
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramirez D, Alonso C, Campillo NE, Martinez A (2020) COVID-19: Drug targets and potential treatments. J Med Chem 63:12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
Article CAS PubMed Google Scholar
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, Derisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, Mccaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399. https://doi.org/10.1126/science.1085952
Article CAS PubMed Google Scholar
Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB, Roush WR, Mckerrow J, Craik CS (2007) Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 46:8744–8752. https://doi.org/10.1021/bi0621415
Article CAS PubMed Google Scholar
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, Von Brunn A, Leyssen P, Lanko K, Neyts J, De Wilde A, Snijder EJ, Liu H, Hilgenfeld R (2020) Alpha-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J Med Chem 63:4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828
Article CAS PubMed Google Scholar
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH (2016) An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J Med Chem 59:6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
Article CAS PubMed PubMed Central Google Scholar
Ullrich S, Nitsche C (2020) The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 30:127377. https://doi.org/10.1016/j.bmcl.2020.127377
Article CAS PubMed PubMed Central Google Scholar
Mengist HM, Dilnessa T, Jin T (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 Main Protease. Front Chem 9:622898. https://doi.org/10.3389/fchem.2021.622898
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y (2020) The development of Coronavirus 3C-Like protease (3CL(pro)) inhibitors from 2010 to 2020. Eur J Med Chem 206:112711. https://doi.org/10.1016/j.ejmech.2020.112711
Article CAS PubMed PubMed Central Google Scholar
Vandyck K, Deval J (2021) Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol 49:36–40. https://doi.org/10.1016/j.coviro.2021.04.006
Article CAS PubMed PubMed Central Google Scholar
Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J Med Chem 65:6499–6512. https://doi.org/10.1021/acs.jmedchem.2c00117
Article CAS PubMed PubMed Central Google Scholar
Xiong Y, Zhu GH, Wang HN, Hu Q, Chen LL, Guan XQ, Li HL, Chen HZ, Tang H, Ge GB (2021) Discovery of naturally occurring inhibitors against SARS-CoV-2 3CL(pro) from Ginkgo biloba leaves via large-scale screening. Fitoterapia 152:104909. https://doi.org/10.1016/j.fitote.2021.104909
Article CAS PubMed PubMed Central Google Scholar
Zhang YN, Zhu GH, Liu W, Chen XX, Xie YY, Xu JR, Jiang MF, Zhuang XY, Zhang WD, Chen HZ, Ge GB (2023) Discovery of the covalent SARS-CoV-2 Mpro inhibitors from antiviral herbs via integrating target-based high-throughput screening and chemoproteomic approaches. J Med Virol 95:29208. https://doi.org/10.1002/jmv.29208
Cohen MM (2014) Tulsi - Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 5:251–259. https://doi.org/10.4103/0975-9476.146554
Article PubMed PubMed Central Google Scholar
Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacognosy Rev 4:95–105. https://doi.org/10.4103/0973-7847.65323
Sinoriya SK, Singh K (2024) Review on therapeutic uses of tulsi with its phytochemical constituents in different kind of extracts. J Plant Sci Res 11(2):263
Paidi RK, Jana M, Raha S, Mckay M, Sheinin M, Mishra RK, Pahan K (2021) Eugenol, a component of Holy Basil (Tulsi) and common spice clove, inhibits the interaction between SARS-CoV-2 spike S1 and ACE2 to induce therapeutic responses. J Neuroimmune Pharmacol 16:743–755. https://doi.org/10.1007/s11481-021-10028-1
Article PubMed PubMed Central Google Scholar
Hanashima S, Mizushina Y, Yamazaki T, Ohta K, Takahashi S, Koshino H, Sahara H, Sakaguchi K, Sugawara F (2000) Structural determination of sulfoquinovosyldiacylglycerol by chiral syntheses. Tetrahedron Lett 41:4403–4407. https://doi.org/10.1016/S0040-4039(00)00638-9
Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286. https://doi.org/10.1016/S0021-9258(17)44113-5
Article CAS PubMed Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Li C, Yu G, Guan H (2014) Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar Drugs 12:3634–3659. https://doi.org/10.3390/md12063634
Comments (0)