Sulfoquinovosyl diacylglycerol, a component of Holy Basil Ocimum tenuiflorum, inhibits the activity of the SARS-CoV-2 main protease and viral replication in vitro

Wang L, Wang Y, Ye D, Liu Q (2020) Erratum to “A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence” [International Journal of Antimicrobial Agents 55/6 (2020) 105948]. Int J Antimicrob Agents 56:106137. https://doi.org/10.1016/j.ijantimicag.2020.106137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ip JD, Wing-Ho Chu A, Chan WM, Cheuk-Ying Leung R, Umer Abdullah SM, Sun Y, Kai-Wang To K (2023) Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance. EBiomedicine 91:104559. https://doi.org/10.1016/j.ebiom.2023.104559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J (2023) Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. ACS Cent Sci 9:1658–1669. https://doi.org/10.1021/acscentsci.3c00538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stevens LJ, Pruijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, George AS, Hughes TM, Lu X, Li J, Perry JK, Porter DP, Cihlar T, Sheahan TP, Baric RS, Gotte M, Denison MR (2022) Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med 14:eabo0718. https://doi.org/10.1126/scitranslmed.abo0718

Article  CAS  PubMed  Google Scholar 

Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (2016) Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 15:327–347. https://doi.org/10.1038/nrd.2015.37

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramirez D, Alonso C, Campillo NE, Martinez A (2020) COVID-19: Drug targets and potential treatments. J Med Chem 63:12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606

Article  CAS  PubMed  Google Scholar 

Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, Derisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, Mccaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399. https://doi.org/10.1126/science.1085952

Article  CAS  PubMed  Google Scholar 

Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB, Roush WR, Mckerrow J, Craik CS (2007) Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 46:8744–8752. https://doi.org/10.1021/bi0621415

Article  CAS  PubMed  Google Scholar 

Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, Von Brunn A, Leyssen P, Lanko K, Neyts J, De Wilde A, Snijder EJ, Liu H, Hilgenfeld R (2020) Alpha-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. J Med Chem 63:4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828

Article  CAS  PubMed  Google Scholar 

Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH (2016) An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J Med Chem 59:6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ullrich S, Nitsche C (2020) The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 30:127377. https://doi.org/10.1016/j.bmcl.2020.127377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mengist HM, Dilnessa T, Jin T (2021) Structural basis of potential inhibitors targeting SARS-CoV-2 Main Protease. Front Chem 9:622898. https://doi.org/10.3389/fchem.2021.622898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y (2020) The development of Coronavirus 3C-Like protease (3CL(pro)) inhibitors from 2010 to 2020. Eur J Med Chem 206:112711. https://doi.org/10.1016/j.ejmech.2020.112711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vandyck K, Deval J (2021) Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr Opin Virol 49:36–40. https://doi.org/10.1016/j.coviro.2021.04.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y (2022) Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19. J Med Chem 65:6499–6512. https://doi.org/10.1021/acs.jmedchem.2c00117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong Y, Zhu GH, Wang HN, Hu Q, Chen LL, Guan XQ, Li HL, Chen HZ, Tang H, Ge GB (2021) Discovery of naturally occurring inhibitors against SARS-CoV-2 3CL(pro) from Ginkgo biloba leaves via large-scale screening. Fitoterapia 152:104909. https://doi.org/10.1016/j.fitote.2021.104909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YN, Zhu GH, Liu W, Chen XX, Xie YY, Xu JR, Jiang MF, Zhuang XY, Zhang WD, Chen HZ, Ge GB (2023) Discovery of the covalent SARS-CoV-2 Mpro inhibitors from antiviral herbs via integrating target-based high-throughput screening and chemoproteomic approaches. J Med Virol 95:29208. https://doi.org/10.1002/jmv.29208

Article  CAS  Google Scholar 

Cohen MM (2014) Tulsi - Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 5:251–259. https://doi.org/10.4103/0975-9476.146554

Article  PubMed  PubMed Central  Google Scholar 

Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacognosy Rev 4:95–105. https://doi.org/10.4103/0973-7847.65323

Article  CAS  Google Scholar 

Sinoriya SK, Singh K (2024) Review on therapeutic uses of tulsi with its phytochemical constituents in different kind of extracts. J Plant Sci Res 11(2):263

Google Scholar 

Paidi RK, Jana M, Raha S, Mckay M, Sheinin M, Mishra RK, Pahan K (2021) Eugenol, a component of Holy Basil (Tulsi) and common spice clove, inhibits the interaction between SARS-CoV-2 spike S1 and ACE2 to induce therapeutic responses. J Neuroimmune Pharmacol 16:743–755. https://doi.org/10.1007/s11481-021-10028-1

Article  PubMed  PubMed Central  Google Scholar 

Hanashima S, Mizushina Y, Yamazaki T, Ohta K, Takahashi S, Koshino H, Sahara H, Sakaguchi K, Sugawara F (2000) Structural determination of sulfoquinovosyldiacylglycerol by chiral syntheses. Tetrahedron Lett 41:4403–4407. https://doi.org/10.1016/S0040-4039(00)00638-9

Article  CAS  Google Scholar 

Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286. https://doi.org/10.1016/S0021-9258(17)44113-5

Article  CAS  PubMed  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Li C, Yu G, Guan H (2014) Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar Drugs 12:3634–3659. https://doi.org/10.3390/md12063634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif