Merino, E. (2011). Synthesis of azobenzenes: The coloured pieces of molecular materials. Chemical Society Reviews, 40, 3835–3853. https://doi.org/10.1039/C0CS00183J
Article CAS PubMed Google Scholar
Liu, Z. F., Hashimoto, K., & Fujishima, A. (1990). Photoelectrochemical information storage using an azobenzene derivative. Nature, 347, 658–660. https://doi.org/10.1038/347658a0
Selivanova, G. A. (2021). Azo chromophores for nonlinear-optical application. Russian Chemical Bulletin, 70, 213–238. https://doi.org/10.1007/s11172-021-3080-z
Arkhipova, V., Fu, H., Hoorens, M. W. H., Trinco, G., Lameijer, L. N., Marin, E., et al. (2021). Structural aspects of photopharmacology: Insight into the binding of photoswitchable and photocaged inhibitors to the glutamate transporter homologue. Journal of the American Chemical Society, 143, 1513–1520. https://doi.org/10.1021/jacs.0c11336
Article CAS PubMed PubMed Central Google Scholar
Jerca, F. A., Jerca, V. V., & Hoogenboom, R. (2022). Advances and opportunities in the exciting world of azobenzenes. Nature Reviews Chemistry, 6(1), 51–69. https://doi.org/10.1038/s41570-021-00334-w
Fedele, C., Ruoko, T.-P., Kuntze, K., Virkki, M., & Priimagi, A. (2022). New tricks and emerging applications from contemporary azobenzene research. Photochemical & Photobiological Sciences, 21, 1719–1734. https://doi.org/10.1007/s43630-022-00262-8
Garcia-Amorós, J., Castro, M. C. R., Coelho, P., Raposo, M. M. M., & Velasco, D. (2013). New heterocyclic systems to afford microsecond green-light isomerisable azo dyes and their use as fast molecular photochromic switches. Chemical Communications, 49, 11427–11429. https://doi.org/10.1039/c3cc46736h
Article CAS PubMed Google Scholar
Ikeda, T., & Tsutsumi, O. (1995). Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268, 1873–1875. https://doi.org/10.1126/science.268.5219.1873
Article CAS PubMed Google Scholar
Samanta, S., McCormick, T. M., Schmidt, S. K., Seferos, D. S., & Woolley, G. A. (2013). Robust visible light photoswitching with ortho-thiol substituted azobenzenes. Chemical Communications, 49, 10314–10316. https://doi.org/10.1039/C3CC46045B
Article CAS PubMed Google Scholar
Dudek, M., Kaczmarek-Kędziera, A., Deska, R., Trojnar, J., Jasik, P., Młynarz, P., et al. (2022). Linear and nonlinear optical properties of azobenzene derivatives modified with an (amino)naphthalene moiety. Journal of Physical Chemistry B, 126(32), 6063–6073. https://doi.org/10.1021/acs.jpcb.2c03078
Article CAS PubMed Google Scholar
Dong, M., Babalhavaeji, A., Samanta, S., Beharry, A. A., & Woolley, G. A. (2015). Red-shifting azobenzene photoswitches for in vivo use. Accounts of Chemical Research, 48, 2662–2670. https://doi.org/10.1021/acs.accounts.5b00270
Article CAS PubMed Google Scholar
Lameijer, L. N., Budzak, S., Simeth, N. A., Hansen, M. J., Feringa, B. L., Jacquemin, D., et al. (2020). General principles for the design of visible-light-responsive photoswitches: Tetra-ortho-chloro-azobenzenes. Angewandte Chemie International Edition, 59, 21663–21670. https://doi.org/10.1002/anie.202008700
Article CAS PubMed Google Scholar
Aleotti, F., Nenov, A., Salvigni, L., Bonfanti, M., El-Tahawy, M. M., Giunchi, A., et al. (2020). Spectral tuning and photoisomerization efficiency in push-pull azobenzenes: Designing principles. Journal of Physical Chemistry A, 124, 9513–9523. https://doi.org/10.1021/acs.jpca.0c08672
Article CAS PubMed Google Scholar
Knie, C., Utecht, M., Zhao, F., Kulla, H., Kovalenko, S., Brouwer, A. M., et al. (2014). ortho-Fluoroazobenzenes: Visible light switches with very long-lived Z isomers. Chemistry: A European Journal, 20, 16492–16501. https://doi.org/10.1002/chem.201404649
Article CAS PubMed Google Scholar
Kuntze, K., Viljakka, J., Titov, E., Ahmed, Z., Kalenius, E., Saalfrank, P., et al. (2022). Towards low-energy-light-driven bistable photoswitches: Ortho-fluoroaminoazobenzenes. Photochemical & Photobiological Sciences, 21, 159–173. https://doi.org/10.1007/s43630-021-00145-4
Crespi, S., Simeth, N. A., & König, B. (2019). Heteroaryl azo dyes as molecular photoswitches. Nature Reviews Chemistry, 3, 133–146. https://doi.org/10.1038/s41570-019-0074-6
Calbo, J., Weston, C. E., White, A. J. P., Rzepa, H. S., Contreras-García, J., & Fuchter, M. J. (2017). Tuning azoheteroarene photoswitch performance through heteroaryl design. Journal of the American Chemical Society, 139, 1261–1274. https://doi.org/10.1021/jacs.6b11626
Article CAS PubMed Google Scholar
Devi, S., Saraswat, M., Grewal, S., & Venkataramani, S. (2018). Evaluation of substituent effect in Z-isomer stability of arylazo-1H-3,5- dimethylpyrazoles—Interplay of steric, electronic effects and hydrogen bonding. The Journal of Organic Chemistry, 83, 4307–4322. https://doi.org/10.1021/acs.joc.7b02604
Article CAS PubMed Google Scholar
Calbo, J., Thawani, A. R., Gibson, R. S. L., White, A. J. P., & Fuchter, M. J. (2019). A combinatorial approach to improving the performance of azoarene photoswitches. Beilstein Journal of Organic Chemistry, 15, 2753–2764. https://doi.org/10.3762/bjoc.15.266
Article CAS PubMed PubMed Central Google Scholar
Heindl, A. H., & Wegner, H. A. (2020). Rational design of azothiophenes—Substitution effects on the switching properties. Chemistry: A European Journal, 26, 13730–13737. https://doi.org/10.1002/chem.202001148
Article CAS PubMed Google Scholar
van Eldik, R., Asano, T., & Le Noble, W. J. (1989). Activation and reaction volumes in solution. 2. Chemical Reviews, 89(3), 549–688. https://doi.org/10.1021/cr00093a005
Asano, T., Okada, T., Shinkai, S., Shigematsu, K., Kusano, Y., & Manabe, O. (1981). Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. Journal of the American Chemical Society, 103(17), 5161–5165. https://doi.org/10.1021/ja00407a034
Asano, T., & Okada, T. (1986). Further kinetic evidence for the competitive rotational and inversional Z–E isomerization of substituted azobenzenes. The Journal of Organic Chemistry, 51(23), 4454–4458. https://doi.org/10.1021/jo00373a021
Shin, D. M., & Whitten, D. G. (1988). Solvent-induced mechanism change in charge-transfer molecules. inversion versus rotation paths for the Z–E isomerization of donor–acceptor substituted azobenzenes. Journal of the American Chemical Society, 110, 5206–5208. https://doi.org/10.1021/ja00223a058
Garcia-Amorós, J., Stopa, G., Stochel, G., van Eldik, R., Martinez, M., & Velasco, D. (2018). Activation volumes for cis-to-trans isomerisation reactions of azophenols. A clear mechanistic indicator? Physical Chemistry Chemical Physics, 20, 1286–1292. https://doi.org/10.1039/C7CP07349F
Muždalo, A., Saalfrank, P., Vreede, J., & Santer, M. (2018). Cis-to-trans isomerization of azobenzene derivatives studied with transition path sampling and quantum mechanical/molecular mechanical molecular dynamics. Journal of Chemical Theory and Computation, 14, 2042–2051.
Dokić, J., Gothe, M., Wirth, J., Peters, M. V., Schwarz, J., Hecht, S., et al. (2009). Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: Substituent effects, solvent effects, and comparison to experimental data. Journal of Physical Chemistry A, 113, 6763–6773. https://doi.org/10.1021/jp9021344
Article CAS PubMed Google Scholar
Rietze, C., Titov, E., Lindner, S., & Saalfrank, P. (2017). Thermal isomerization of azobenzenes: On the performance of eyring transition state theory. Journal of Physics: Condensed Matter, 29, 314002. https://doi.org/10.1088/1361-648X/aa75bd
Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L., & Orlandi, G. (2004). On the mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1. Journal of the American Chemical Society, 126, 3234–3243. https://doi.org/10.1021/ja038327y
Article CAS PubMed Google Scholar
Singer, N. K., Schlogl, K., Zobel, J. P., Mihovilovic, M. D., & Gonzalez, L. (2023). Singlet and triplet pathways determine the thermal Z/E isomerization of an arylazopyrazole-based photoswitch. The Journal of Physical Chemistry Letters, 14, 8956–8961. https://doi.org/10.1021/acs.jpclett.3c01785
Article CAS PubMed PubMed Central Google Scholar
Reimann, M., Teichmann, E., Hecht, S., & Kaupp, M. (2022). Solving the azobenzene entropy puzzle: Direct evidence for multi-state reactivity. Journal of Physical Chemistry Letters, 13, 10882–10888. https://doi.org/10.1021/acs.jpclett.2c02838
Article CAS PubMed Google Scholar
Axelrod, S., Shakhnovich, E., & Gomez-Bombarelli, R. (2022). Thermal half-lives of azobenzene derivatives: virtual screening based on intersystem crossing using a machine learning potential. arXiv 2022, arXiv:2207.11592v2 [physics.chem-ph]. https://arxiv.org/abs/2207.11592
Nekipelova, T. D., Khodot, E. N., Klimovich (Lygo), O. N., Kurkovskaya, L. N., Levina, I. I., & Kuzmin, V. A. (2016). Novel hetarylazo dyes containing tetrazole and hydroquinoline moieties: Spectral characteristics, solvatochromism and photochemistry. Photochemical & Photobiological Sciences, 15, 1558–1566. https://doi.org/10.1039/C6PP00251J
Nekipelova, T. D., Khodot, E. N., Deeva, Y. S., Levina, I. I., Timokhina, E. N., Kostyukov, et al. (2021). Dihydroquinolylazotetrazole dyes: Effect of a substituent at the tetrazole fragment on spectral properties and thermal Z–E isomerization in organic solvents. Dyes and Pigments, 195, 109675. https://doi.org/10.1016/j.dyepig.2021.109675
Comments (0)