Photoexcited triplet state and singlet oxygen generation of quinine, an antimalarial drug

Spikes, J. D. (1998). Photosensitizing properties of quinine and synthetic antimalarials. Journal of Photochemistry and Photobiology B: Biology, 42, 1–11. https://doi.org/10.1016/S1011-1344(97)00087-0

Article  CAS  PubMed  Google Scholar 

Kristensen, S., Orsteen, A.-L., Sande, S. A., & Tønnesen, H. H. (1994). Photoreactivity of biologically active compounds VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening. Journal of Photochemistry and Photobiology B: Biology, 26, 87–95. https://doi.org/10.1016/1011-1344(94)85039-9

Article  CAS  PubMed  Google Scholar 

Bäumler, W. (2016). Singlet oxygen in the skin. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 205–226). The Royal Society of Chemistry.

Chapter  Google Scholar 

Roberts, J., & Zhao, B. (2016). Singlet oxygen in the eye. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 227–249). The Royal Society of Chemistry.

Chapter  Google Scholar 

Severino, D., Pavani, C., Castellani, G. M., & Baptista, M. M. (2016). Singlet oxygen in hair. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 251–264). The Royal Society of Chemistry.

Chapter  Google Scholar 

Bresolí-Obach, R., Hally, C., & Nonell, S. (2016). Activatable photosensitizers. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 1, pp. 163–181). The Royal Society of Chemistry.

Chapter  Google Scholar 

Morten, A. G., Martinez, L. J., Holt, N., Sik, R. H., Reszka, K., Chignell, C. F., Tonnesen, H. H., & Roberts, J. E. (1999). Photophysical studies on antimalariai drugs. Photochemistry and Photobiology, 69, 282–287. https://doi.org/10.1111/j.1751-1097.1999.tb03287.x

Article  Google Scholar 

Valencia, C. U., Lemp, E., & Zanocco, A. L. (2003). Quantum yields of singlet molecular oxygen, O2(1Δg), produced by antimalaric drugs in organic solvents. Journal of the Chilean Chemical Society, 48, 17–21. https://doi.org/10.4067/S0717-97072003000400003

Article  Google Scholar 

Allen, R. I., Box, K. J., Comer, J. E. A., Peake, C., & Tam, K. Y. (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17, 699–712. https://doi.org/10.1016/S0731-7085(98)00010-7

Article  CAS  PubMed  Google Scholar 

Castro, E. A., Aliaga, M., Campodonico, P. R., Leis, J. R., García-Río, L., & Santos, J. G. (2008). Reactions of aryl chlorothionoformates with quinuclidines. A kinetic study. Journal of Physical Organic Chemistry, 21, 102–107. https://doi.org/10.1002/poc.1286

Article  CAS  Google Scholar 

Poizat, O., Bardez, E., Buntinx, G., & Alain, V. (2004). Picosecond dynamics of the photoexcited 6-methoxyquinoline and 6-hydroxyquinoline molecules in solution. The Journal of Physical Chemistry A, 108, 1873–1880. https://doi.org/10.1021/jp030964n

Article  CAS  Google Scholar 

Schulman, S. G., Threatte, R. M., Capomacchia, A. C., & Paul, W. L. (1974). Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media. Journal of Pharmaceutical Sciences, 63, 876–880. https://doi.org/10.1002/jps.2600630615

Article  CAS  PubMed  Google Scholar 

Melhuish, W. H. (1960). A standard fluorescence spectrum for calibrating spectro-fluorophotometers. The Journal of Physical Chemistry, 64, 762–764. https://doi.org/10.1021/j100835a014

Article  CAS  Google Scholar 

Melhuish, W. H. (1961). Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. The Journal of Physical Chemistry, 65, 229–235. https://doi.org/10.1021/j100820a009

Article  CAS  Google Scholar 

Yadav, S. K., Rawat, G., Pokharia, S., Jit, S., & Mishra, H. (2019). Excited-state dynamics of quinine sulfate and its di-cation doped in polyvinyl alcohol thin films near silver nanostructure islands. ACS Omega, 4, 5509–5516. https://doi.org/10.1021/acsomega.9b00009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore, D. E., & Hemmens, V. J. (1982). Photosensitization by antimalarial drugs. Photochemistry and Photobiology, 36, 71–77. https://doi.org/10.1111/j.1751-1097.1982.tb04342.x

Article  CAS  PubMed  Google Scholar 

Qin, G., Wei, Y., Kang, H., & Dong, C. (2012). Chiral discrimination and enantiomeric composition analysis of quinine and quinidine based on paper substrate room temperature phosphorescence. Analytical Methods, 4, 3928–3931. https://doi.org/10.1039/C2AY26073E

Article  CAS  Google Scholar 

Aloisi, G. G., Barbafina, A., Canton, M., Dall’Acqua, F., Elisei, F., Facciolo, L., Latterini, L., & Viola, G. (2004). Photophysical and photobiological behaviour of antimalarial drugs in aqueous solutions. Photochemistry and Photobiology, 79, 248–258. https://doi.org/10.1111/j.1751-1097.2004.tb00392.x

Article  CAS  PubMed  Google Scholar 

De Silva, J. A. F., Strojny, N., & Stika, K. (1976). Luminescence determination of pharmaceuticals of tetrahydrocarbazole, carbazole, and 1,4-benzodiazepine class. Analytical Chemistry, 48, 144–155. https://doi.org/10.1021/ac60365a064

Article  PubMed  Google Scholar 

Harbaugh, K. F., O’Donnel, C. M., & Winefordner, J. D. (1974). Pulse source time resolved phosphorimetry for the quantitative and qualitative analysis of drugs. Analytical Chemistry, 46, 1206–1209. https://doi.org/10.1021/ac60345a045

Article  CAS  PubMed  Google Scholar 

Ito, K., & Azumi, T. (1973). Shift of emission band upon excitation at the long wavelength absorption edge. 1. A preliminary survey for quinine and related compounds. Chemical Physics Letters, 22, 395–399. https://doi.org/10.1016/0009-2614(73)80576-7

Article  Google Scholar 

Winefordner, J. D., & Tin, M. (1964). The use of rigid ethanol solutions for the phosphorimetric investigation of organic compounds of pharmacological interest. Analytica Chimica Acta, 31, 239–245. https://doi.org/10.1016/S0003-2670(00)88814-5

Article  CAS  Google Scholar 

Turley, A. T., Danos, A., Prlj, A., Monkman, A. P., Curchod, B. F. E., McGonigal, P. R., & Etherington, M. K. (2020). Modulation of charge transfer by N-alkylation to control photoluminescence energy and quantum yield. Chemical Science, 11, 6990–6995. https://doi.org/10.1039/D0SC02460K

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shamoto, Y., Shimizu, R., Yagi, M., Oguchi-Fujiyama, N., Kang, J., & Kikuchi, A. (2020). Short-lived and nonphosphorescent triplet state of Mexoryl SX, a UV-A sunscreen. Applied Magnetic Resonance, 51, 567–580. https://doi.org/10.1007/s00723-020-01198-x

Article  Google Scholar 

Kitasaka, S., Yagi, M., & Kikuchi, A. (2020). Suppression of menthyl anthranilate (UV-A sunscreen)-sensitized singlet oxygen generation by Trolox and α-tocopherol. Photochemical & Photobiological Sciences, 19, 913–919. https://doi.org/10.1039/D0PP00023J

Article  CAS  Google Scholar 

Fukuchi, S., Yagi, M., Oguchi-Fujiyama, N., Kang, J., & Kikuchi, A. (2019). A novel characteristic of salicylate UV absorbers: Suppression of diethylhexyl 2,6-naphthalate (Corapan TQ)-photosensitized singlet oxygen generation. Photochemical & Photobiological Sciences, 18, 1556–1564. https://doi.org/10.1039/C9PP00104B

Article  CAS  Google Scholar 

Shimizu, R., Yagi, M., Oguchi-Fujiyama, N., Miyazawa, K., & Kikuchi, A. (2018). Photophysical properties of diethylhexyl 2,6-naphthalate (Corapan TQ), a photostabilizer for sunscreen. Photochemical & Photobiological Sciences, 17, 1206–1212. https://doi.org/10.1039/C8PP00204E

Article  CAS  Google Scholar 

Tsuchiya, T., Kikuchi, A., Oguchi-Fujiyama, N., Miyazawa, K., & Yagi, M. (2015). Photoexcited triplet states of UV-B absorbers: Ethylhexyl triazone and diethylhexylbutamido triazone. Photochemical & Photobiological Sciences, 14, 807–814. https://doi.org/10.1039/C4PP00373J

Article  CAS  Google Scholar 

Pant, D., Tripathi, H. B., & Pant, D. D. (1992). Time resolved fluorescence spectroscopy of quinine sulphate, quinidine and 6-methoxyquinoline: PH dependence. Journal of Luminescence, 51, 223–230. https://doi.org/10.1016/0022-2313(92)90057-G

Article  CAS  Google Scholar 

Grabowski, Z. R., & Grabowska, A. (1976). The Förster cycle reconsidered. Zeitschrift für Physikalische Chemie Neue Folge, 101, 197–208. https://doi.org/10.1524/zpch.1976.101.1-6.197

Article  CAS  Google Scholar 

Aaron, J. J., Ward, J., & Winefordner, J. D. (1981). Spectrophosphorimetric determination of lowest excited triplet-state dissociation constants of substituted quinolines—Quantitative study of the substituent effects. Journal de Chimie Physique, 78, 493–496. https://doi.org/10.1051/jcp/1981780493

Article  CAS  Google Scholar 

Muto, Y., Nakato, Y., & Tsubomura, H. (1971). Solvent effects on the fluorescence spectra of some aliphatic amines in solutions. Chemical Physics Letters, 9, 597–599. https://doi.org/10.1016/0009-2614(71)85137-0

Article  CAS  Google Scholar 

Komura, A., Uchida, K., Yagi, M., & Higuchi, J. (1988). Electron spin resonance and phosphorescence of quinoline, isoquinoline and their protonated cations in the phosphorescent triplet states. Journal of Photochemistry and Photobiology A: Chemistry, 42, 293–300. https://doi.org/10.1016/1010-6030(88)80072-8

Article  CAS  Google Scholar 

Yagi, M., Komura, A., & Higuchi, J. (1988). A time-resolved electron spin resonance study of the triplet states of quinoline, isoquinoline. their protonated cations and naphthalene. Chemical Physics Letters, 148, 37–40. https://doi.org/10.1016/0009-2614(88)87256-7

Article  CAS  Google Scholar 

Kottis, P., & Lefebvre, R. (1963). Calculation of the electron spin resonance line shape of randomly oriented molecules in a triplet state. I. The ∆m = 2 transition with a constant linewidth. The Journal of Chemical Physics, 39, 393–403. https://doi.org/10.1063/1.1734260

Article  CAS  Google Scholar 

Pant, D., Tripathi, H. B., & Pant, D. D. (1991). Excited state solvation dynamics of 6-methoxyquinoline. Journal of Photochemistry and Photobiology A: Chemistry, 56, 207–217. https://doi.org/10.1016/1010-6030(91)80021-9

Article  CAS  Google Scholar 

Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79, 11–17.

Comments (0)

No login
gif