Spikes, J. D. (1998). Photosensitizing properties of quinine and synthetic antimalarials. Journal of Photochemistry and Photobiology B: Biology, 42, 1–11. https://doi.org/10.1016/S1011-1344(97)00087-0
Article CAS PubMed Google Scholar
Kristensen, S., Orsteen, A.-L., Sande, S. A., & Tønnesen, H. H. (1994). Photoreactivity of biologically active compounds VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening. Journal of Photochemistry and Photobiology B: Biology, 26, 87–95. https://doi.org/10.1016/1011-1344(94)85039-9
Article CAS PubMed Google Scholar
Bäumler, W. (2016). Singlet oxygen in the skin. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 205–226). The Royal Society of Chemistry.
Roberts, J., & Zhao, B. (2016). Singlet oxygen in the eye. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 227–249). The Royal Society of Chemistry.
Severino, D., Pavani, C., Castellani, G. M., & Baptista, M. M. (2016). Singlet oxygen in hair. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 2, pp. 251–264). The Royal Society of Chemistry.
Bresolí-Obach, R., Hally, C., & Nonell, S. (2016). Activatable photosensitizers. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 1, pp. 163–181). The Royal Society of Chemistry.
Morten, A. G., Martinez, L. J., Holt, N., Sik, R. H., Reszka, K., Chignell, C. F., Tonnesen, H. H., & Roberts, J. E. (1999). Photophysical studies on antimalariai drugs. Photochemistry and Photobiology, 69, 282–287. https://doi.org/10.1111/j.1751-1097.1999.tb03287.x
Valencia, C. U., Lemp, E., & Zanocco, A. L. (2003). Quantum yields of singlet molecular oxygen, O2(1Δg), produced by antimalaric drugs in organic solvents. Journal of the Chilean Chemical Society, 48, 17–21. https://doi.org/10.4067/S0717-97072003000400003
Allen, R. I., Box, K. J., Comer, J. E. A., Peake, C., & Tam, K. Y. (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17, 699–712. https://doi.org/10.1016/S0731-7085(98)00010-7
Article CAS PubMed Google Scholar
Castro, E. A., Aliaga, M., Campodonico, P. R., Leis, J. R., García-Río, L., & Santos, J. G. (2008). Reactions of aryl chlorothionoformates with quinuclidines. A kinetic study. Journal of Physical Organic Chemistry, 21, 102–107. https://doi.org/10.1002/poc.1286
Poizat, O., Bardez, E., Buntinx, G., & Alain, V. (2004). Picosecond dynamics of the photoexcited 6-methoxyquinoline and 6-hydroxyquinoline molecules in solution. The Journal of Physical Chemistry A, 108, 1873–1880. https://doi.org/10.1021/jp030964n
Schulman, S. G., Threatte, R. M., Capomacchia, A. C., & Paul, W. L. (1974). Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media. Journal of Pharmaceutical Sciences, 63, 876–880. https://doi.org/10.1002/jps.2600630615
Article CAS PubMed Google Scholar
Melhuish, W. H. (1960). A standard fluorescence spectrum for calibrating spectro-fluorophotometers. The Journal of Physical Chemistry, 64, 762–764. https://doi.org/10.1021/j100835a014
Melhuish, W. H. (1961). Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. The Journal of Physical Chemistry, 65, 229–235. https://doi.org/10.1021/j100820a009
Yadav, S. K., Rawat, G., Pokharia, S., Jit, S., & Mishra, H. (2019). Excited-state dynamics of quinine sulfate and its di-cation doped in polyvinyl alcohol thin films near silver nanostructure islands. ACS Omega, 4, 5509–5516. https://doi.org/10.1021/acsomega.9b00009
Article CAS PubMed PubMed Central Google Scholar
Moore, D. E., & Hemmens, V. J. (1982). Photosensitization by antimalarial drugs. Photochemistry and Photobiology, 36, 71–77. https://doi.org/10.1111/j.1751-1097.1982.tb04342.x
Article CAS PubMed Google Scholar
Qin, G., Wei, Y., Kang, H., & Dong, C. (2012). Chiral discrimination and enantiomeric composition analysis of quinine and quinidine based on paper substrate room temperature phosphorescence. Analytical Methods, 4, 3928–3931. https://doi.org/10.1039/C2AY26073E
Aloisi, G. G., Barbafina, A., Canton, M., Dall’Acqua, F., Elisei, F., Facciolo, L., Latterini, L., & Viola, G. (2004). Photophysical and photobiological behaviour of antimalarial drugs in aqueous solutions. Photochemistry and Photobiology, 79, 248–258. https://doi.org/10.1111/j.1751-1097.2004.tb00392.x
Article CAS PubMed Google Scholar
De Silva, J. A. F., Strojny, N., & Stika, K. (1976). Luminescence determination of pharmaceuticals of tetrahydrocarbazole, carbazole, and 1,4-benzodiazepine class. Analytical Chemistry, 48, 144–155. https://doi.org/10.1021/ac60365a064
Harbaugh, K. F., O’Donnel, C. M., & Winefordner, J. D. (1974). Pulse source time resolved phosphorimetry for the quantitative and qualitative analysis of drugs. Analytical Chemistry, 46, 1206–1209. https://doi.org/10.1021/ac60345a045
Article CAS PubMed Google Scholar
Ito, K., & Azumi, T. (1973). Shift of emission band upon excitation at the long wavelength absorption edge. 1. A preliminary survey for quinine and related compounds. Chemical Physics Letters, 22, 395–399. https://doi.org/10.1016/0009-2614(73)80576-7
Winefordner, J. D., & Tin, M. (1964). The use of rigid ethanol solutions for the phosphorimetric investigation of organic compounds of pharmacological interest. Analytica Chimica Acta, 31, 239–245. https://doi.org/10.1016/S0003-2670(00)88814-5
Turley, A. T., Danos, A., Prlj, A., Monkman, A. P., Curchod, B. F. E., McGonigal, P. R., & Etherington, M. K. (2020). Modulation of charge transfer by N-alkylation to control photoluminescence energy and quantum yield. Chemical Science, 11, 6990–6995. https://doi.org/10.1039/D0SC02460K
Article CAS PubMed PubMed Central Google Scholar
Shamoto, Y., Shimizu, R., Yagi, M., Oguchi-Fujiyama, N., Kang, J., & Kikuchi, A. (2020). Short-lived and nonphosphorescent triplet state of Mexoryl SX, a UV-A sunscreen. Applied Magnetic Resonance, 51, 567–580. https://doi.org/10.1007/s00723-020-01198-x
Kitasaka, S., Yagi, M., & Kikuchi, A. (2020). Suppression of menthyl anthranilate (UV-A sunscreen)-sensitized singlet oxygen generation by Trolox and α-tocopherol. Photochemical & Photobiological Sciences, 19, 913–919. https://doi.org/10.1039/D0PP00023J
Fukuchi, S., Yagi, M., Oguchi-Fujiyama, N., Kang, J., & Kikuchi, A. (2019). A novel characteristic of salicylate UV absorbers: Suppression of diethylhexyl 2,6-naphthalate (Corapan TQ)-photosensitized singlet oxygen generation. Photochemical & Photobiological Sciences, 18, 1556–1564. https://doi.org/10.1039/C9PP00104B
Shimizu, R., Yagi, M., Oguchi-Fujiyama, N., Miyazawa, K., & Kikuchi, A. (2018). Photophysical properties of diethylhexyl 2,6-naphthalate (Corapan TQ), a photostabilizer for sunscreen. Photochemical & Photobiological Sciences, 17, 1206–1212. https://doi.org/10.1039/C8PP00204E
Tsuchiya, T., Kikuchi, A., Oguchi-Fujiyama, N., Miyazawa, K., & Yagi, M. (2015). Photoexcited triplet states of UV-B absorbers: Ethylhexyl triazone and diethylhexylbutamido triazone. Photochemical & Photobiological Sciences, 14, 807–814. https://doi.org/10.1039/C4PP00373J
Pant, D., Tripathi, H. B., & Pant, D. D. (1992). Time resolved fluorescence spectroscopy of quinine sulphate, quinidine and 6-methoxyquinoline: PH dependence. Journal of Luminescence, 51, 223–230. https://doi.org/10.1016/0022-2313(92)90057-G
Grabowski, Z. R., & Grabowska, A. (1976). The Förster cycle reconsidered. Zeitschrift für Physikalische Chemie Neue Folge, 101, 197–208. https://doi.org/10.1524/zpch.1976.101.1-6.197
Aaron, J. J., Ward, J., & Winefordner, J. D. (1981). Spectrophosphorimetric determination of lowest excited triplet-state dissociation constants of substituted quinolines—Quantitative study of the substituent effects. Journal de Chimie Physique, 78, 493–496. https://doi.org/10.1051/jcp/1981780493
Muto, Y., Nakato, Y., & Tsubomura, H. (1971). Solvent effects on the fluorescence spectra of some aliphatic amines in solutions. Chemical Physics Letters, 9, 597–599. https://doi.org/10.1016/0009-2614(71)85137-0
Komura, A., Uchida, K., Yagi, M., & Higuchi, J. (1988). Electron spin resonance and phosphorescence of quinoline, isoquinoline and their protonated cations in the phosphorescent triplet states. Journal of Photochemistry and Photobiology A: Chemistry, 42, 293–300. https://doi.org/10.1016/1010-6030(88)80072-8
Yagi, M., Komura, A., & Higuchi, J. (1988). A time-resolved electron spin resonance study of the triplet states of quinoline, isoquinoline. their protonated cations and naphthalene. Chemical Physics Letters, 148, 37–40. https://doi.org/10.1016/0009-2614(88)87256-7
Kottis, P., & Lefebvre, R. (1963). Calculation of the electron spin resonance line shape of randomly oriented molecules in a triplet state. I. The ∆m = 2 transition with a constant linewidth. The Journal of Chemical Physics, 39, 393–403. https://doi.org/10.1063/1.1734260
Pant, D., Tripathi, H. B., & Pant, D. D. (1991). Excited state solvation dynamics of 6-methoxyquinoline. Journal of Photochemistry and Photobiology A: Chemistry, 56, 207–217. https://doi.org/10.1016/1010-6030(91)80021-9
Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79, 11–17.
Comments (0)