Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical Society Transactions, 35(5), 1147–1150. https://doi.org/10.1042/BST0351147
Article CAS PubMed Google Scholar
Halliwell, B., & Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods in Enzymology, 186, 1–85. https://doi.org/10.1016/0076-6879(90)86093-b
Article CAS PubMed Google Scholar
Holmstrom, K. M., & Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signaling. Nature Reviews. Molecular Cell Biology, 15(6), 411–421. https://doi.org/10.1038/nrm3801
Article CAS PubMed Google Scholar
Kaludercic, N., Mialet-Perez, J., Paolocci, N., Parini, A., & Di Lisa, F. (2014). Monoamine oxidases as sources of oxidants in the heart. Journal of Molecular and Cellular Cardiology, 73, 34–42. https://doi.org/10.1016/j.yjmcc.2013.12.032
Article CAS PubMed Google Scholar
Thomas, D. D., Heinecke, J. L., Ridnour, L. A., Cheng, R. Y., Kesarwala, A. H., Switzer, C. H., McVicar, D. W., Roberts, D. D., Glynn, S., Fukuto, J. M., Wink, D. A., & Miranda, K. M. (2015). Signaling and stress: The redox landscape in NOS2 biology. Free Radical Biology and Medicine, 87, 204–225. https://doi.org/10.1016/j.freeradbiomed.2015.06.002
Article CAS PubMed Google Scholar
Halliwell, B. (2009). The wanderings of a free radical. Free Radical Biology and Medicine, 46(5), 531–542. https://doi.org/10.1016/j.freeradbiomed.2008.11.008
Article CAS PubMed Google Scholar
Rando, T. A. (2002). Oxidative stress and the pathogenesis of muscular dystrophies. American Journal of Physical Medicine and Rehabilitation, 81(11), S175–S186. https://doi.org/10.1097/00002060200211001-00018
Pervaiz, S., Taneja, R., & Ghaffari, S. (2009). Oxidative stress regulation of stem and progenitor cells. Antioxidants and Redox Signaling, 11(11), 2777–2789. https://doi.org/10.1089/ars.2009.2804
Article CAS PubMed Google Scholar
González-Jamett, A., Vásquez, W., Cifuentes-Riveros, G., Martínez-Pando, R., Sáez, J. C., & Cárdenas, A. M. (2002). Oxidative stress, inflammation and connexin hemichannels in muscular dystrophies. Biomedicines, 10(2), 507. https://doi.org/10.3390/biomedicines10020507
Moore, T. M., Lin, A. J., Strumwasser, A. R., Cory, K., Whitney, K., Ho, T., Ho, T., Lee, J. L., Rucker, D. H., Nguyen, C. Q., Yackly, A., Mahata, S. K., Wanagat, J., Stiles, L., Turcotte, L. P., Crosbie, R. H., & Zhou, Z. (2020). Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice. Frontiers in Physiology, 11, 690. https://doi.org/10.3389/fphys.2020.00690. eCollection 2020.
Article PubMed PubMed Central Google Scholar
Rodriguez, M. C., & Tarnopolsky, M. A. (2003). Patients with dystrophinopathy show evidence of increased oxidative stress. Free Radical Biology and Medicine, 34(9), 1217–1220. https://doi.org/10.1016/s0891-5849(03)00141-2
Article CAS PubMed Google Scholar
Macedo, A. B., Mizobuti, D. S., Hermes, T. A., Mancio, R. D., Pertille, A., Kido, L. A., Cagnon, V. H. A., & Minatel, E. (2020). Photobiomodulation therapy for attenuating the dystrophic phenotype of Mdx mice. Photochemistry and Photobiology, 96(1), 200–207. https://doi.org/10.1111/php.13179
Article CAS PubMed Google Scholar
Mâncio, R. D., Hermes, T. A., Macedo, A. B., Mizobuti, D. S., Valduga, A. H., Rupcic, I. F., & Minatel, E. (2017). Vitamin E treatment decreases muscle injury in mdx mice. Nutrition. https://doi.org/10.1016/j.nut.2017.07.003
Kar, N. C., & Pearson, C. M. (1979). Catalase, superoxide dismutase, glutathione reductase and thiobarbituric acid-reactive products in normal and dystrophic human muscle. Clinica Chimica Acta, 94(3), 277–280. https://doi.org/10.1016/0009-8981(79)90076-7
Vila, M. C., Rayavarapu, S., Hogarth, M. W., Van der Meulen, J. H., Horn, A., Defour, A., Takeda, S., Brown, K. J., Hathout, Y., Nagaraju, K., & Jaiswal, J. K. (2017). Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy. Cell Death and Differentiation, 24(2), 330–342. https://doi.org/10.1038/cdd.2016.127
Article CAS PubMed Google Scholar
Korshunov, S. S., Skulachev, V. P., & Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters, 416(1), 15–18. https://doi.org/10.1016/s0014-5793(97)01159-9
Article CAS PubMed Google Scholar
Andrews, Z. B., Diano, S., & Horvath, T. L. (2005). Mitochondrial uncoupling proteins in the CNS: In support of function and survival. Nature Reviews, Neuroscience, 6(11), 829–840. https://doi.org/10.1038/nrn1767
Article CAS PubMed Google Scholar
Arvier, M., Lagoutte, L., Johnson, G., Dumas, J., Sion, B., Grizard, G., Malthie’ry, Y., Simard, G., & Ritz, P. (2007). Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. American Journal Physiology Endocrinology and Metabolism, 293(5), E1320–E1324. https://doi.org/10.1152/ajpendo.00138.2007
Harper, M. E., Green, K., & Brand, M. D. (2008). The efficiency of cellular energy transduction and its implications for obesity. Annual Review Nutrition, 28, 13–33. https://doi.org/10.1146/annurev.nutr.28.061807.155357
Nadtochiy, S. M., Tompkins, A. J., & Brookes, P. S. (2006). Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: Implications for pathology and cardioprotection. The Biochemical Journal, 395(3), 611–618. https://doi.org/10.1042/BJ20051927
Article CAS PubMed PubMed Central Google Scholar
Hirschenson, J., Melgar-Bermudez, E., & Mailloux, R. J. (2002). The uncoupling proteins: A systematic review on the mechanism used in the prevention of oxidative stress. Antioxidants, 11(2), 322. https://doi.org/10.3390/antiox11020322
Jones, T. E., Baar, K., Ojuka, E., Chen, M., & Holloszy, J. O. (2003). Exercise induces an increase in muscle UCP3 as a component of the increase in mitochondrial biogenesis. American Journal of Physiology, Endocrinology and Metabolism, 284(1), 96–101. https://doi.org/10.1152/ajpendo.00316.2002
Tsuboyama-Kasaoka, N., Tsunoda, N., Maruyama, K., Takahashi, M., Kim, H., Ikemoto, S., & Ezaki, O. (1998). Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. BiochemIcal Biophysical Research Communications, 247(2), 498–503. https://doi.org/10.1006/bbrc.1998.8818
Article CAS PubMed Google Scholar
Albuquerque-Pontes, G. M., Casalechi, H. L., Tomazoni, S. S., Serra, A. J., Ferreira, C. S. B., Brito, R. B. O., Melo, B. L., Vanin, A. A., Monteiro, K. K. D. S., Delle, H., Frigo, L., Marcos, R. L., Carvalho, P. T. C., & Leal-Junior, E. C. P. (2018). Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin. Lasers in Medical Science, 33(4), 755–764. https://doi.org/10.1007/s10103-017-2405-5
Macedo, A. B., Moraes, L. H. R., Mizobuti, D. S., Fogaca, A. R., Moraes, F. R. S., Hermes, T. A., Pertille, A., & Minatel, E. (2015). Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: Effects on regeneration capacity, inflammation response and oxidative stress. PLoS ONE, 10(6), e0128567. https://doi.org/10.1371/journal.pone.0128567
Article CAS PubMed PubMed Central Google Scholar
Rocha, G. L., Mizobuti, D. S., Silva, H. N. M., Covatti, C., Lourenço, C. C., Salvador, M. J., Pereira, E. C. L., & Minatel, E. (2022). Multiple LEDT wavelengths modulate the Akt signaling pathways and attenuate pathological events in mdx dystrophic muscle cells. Photochemical and Photobiological Sciences, 21(7), 1257–1272. https://doi.org/10.1007/s43630-022-00216-0
Article CAS PubMed Google Scholar
Freitas, L. F., & Hamblin, M. R. (2016). Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 7000417. https://doi.org/10.1109/JSTQE.2016.2561201
Article CAS PubMed PubMed Central Google Scholar
Karu, T. I. (2008). Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochemistry and Photobiology, 84(5), 1091–1099. https://doi.org/10.1111/j.17511097.2008.00394.x
Article CAS PubMed Google Scholar
Lima, P. L. V., Pereira, C. V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C. M. C., Diaz, F., & Moraes, C. T. (2019). Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. Journal of Photochemistry and Photobiology B, Biology, 194, 71–75. https://doi.org/10.1016/j.jphotobiol.2019.03.015
Article CAS PubMed Google Scholar
Silveira, P. C. L., Ferreira, G. K., Zaccaron, R. P., Glaser, V., Remor, A. P., Mendes, C., Pinho, R. A., & Latini, A. (2019). Effects of photobiomodulation on mitochondria of brain, muscle, and C6 astroglioma cells. Medical Engineering and Physics, 71, 108–113. https://doi.org/10.1016/j.medengphy.2019.05.008
Ferraresi, C., Kaippert, B., Avci, P., Huang, Y., Souza, M. V. P., Bagnato, V. S., Parizotto, N. A., & Hamblin, M. R. (2015). Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochemistry and Photobiology, 91(2), 411–416. https://doi.org/10.1111/php.12397
Article CAS PubMed Google Scholar
Wong-Riley, M. T. T., Liang, H. L., Eells, J. T., Chance, B., Henry, M. M., Buchmann, E., Kane, M., & Whelan, H. T. (2005). Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: Role of cytochrome c oxidase. The Journal of Biological Chemistry, 280(6), 4761–4771. https://doi.org/10.1074/jbc.M409650200
Comments (0)