DeRosa, M. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233–234, 351–371. https://doi.org/10.1016/S0010-8545(02)00034-6
Foote, C. S., & Wexler, S. (1964). Singlet oxygen. A probable intermediate in photosensitized autoxidations. Journal of the American Chemical Society, 86, 3880–3881. https://doi.org/10.1021/ja01072a061
Di Mascio, P., Martinez, G. R., Miyamoto, S., Ronsein, G. E., Medeiros, M. H. G., & Cadet, J. (2019). Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chemical Reviews, 119, 2043–2086. https://doi.org/10.1021/acs.chemrev.8b00554
Article CAS PubMed Google Scholar
Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G., & McFarland, S. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 119, 797–828. https://doi.org/10.1021/acs.chemrev.8b00211
Article CAS PubMed Google Scholar
Ogilby, P. R. (2010). Singlet oxygen: There is indeed something new under the sun. Chemical Society Reviews, 39, 3181. https://doi.org/10.1039/b926014p
Article CAS PubMed Google Scholar
Bogoeva, V., Siksjø, M., Sæterbø, K. G., Melø, T. B., Bjørkøy, A., Lindgren, M., & Gederaas, O. A. (2016). Ruthenium porphyrin-induced photodamage in bladder cancer cells. Photodiagnosis and Photodynamic Therapy, 14, 9–17. https://doi.org/10.1016/j.pdpdt.2016.01.012
Article CAS PubMed Google Scholar
Griffiths, J., Chu, K.-Y., & Hawkins, C. (1976). Photosensitised oxidation of 1-naphthols. Journal of the Chemical Society, Chemical Communications, 676, 1. https://doi.org/10.1039/c39760000676
Takizawa, S., Aboshi, R., & Murata, S. (2011). Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensitizers. Photochemical & Photobiological Sciences, 10, 895. https://doi.org/10.1039/c0pp00265h
Ohloff, G. (1975). Singlet oxygen: A reagent in organic synthesis. In A. Bruylants, L. Ghosez, & H. G. Viehe (Eds.), Organic synthesis (pp. 481–502). Butterworth-Heinemann.
Ravelli, D., Protti, S., Neri, P., Fagnoni, M., & Albini, A. (2011). Photochemical technologies assessed: The case of rose oxide. Green Chemistry, 13, 1876–1884. https://doi.org/10.1039/c0gc00507j
Terra, J. C. S., Desgranges, A., Monnereau, C., Sanchez, E. H., De Toro, J. A., Amara, Z., & Moores, A. (2020). Photocatalysis meets magnetism: Designing magnetically recoverable supports for visible-light photocatalysis. ACS Applied Materials & Interfaces, 12, 24895–24904. https://doi.org/10.1021/acsami.0c06126
Covello, P. S. (2008). Making artemisinin. Phytochemistry, 69, 2881–2885. https://doi.org/10.1016/j.phytochem.2008.10.001
Article CAS PubMed Google Scholar
Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., Leavell, M. D., Tai, A., Main, A., Eng, D., Polichuk, D. R., Teoh, K. H., Reed, D. W., Treynor, T., Lenihan, J., Jiang, H., Fleck, M., Bajad, S., Dang, G., … Newman, J. D. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532. https://doi.org/10.1038/nature12051
Article CAS PubMed Google Scholar
Lévesque, F., & Seeberger, P. H. (2012). Continuous-flow synthesis of the anti-malaria drug artemisinin. Angewandte Chemie International Edition, 51, 1706–1709. https://doi.org/10.1002/anie.201107446
Article CAS PubMed Google Scholar
Amara, Z., Bellamy, J. F. B., Horvath, R., Miller, S. J., Beeby, A., Burgard, A., Rossen, K., Poliakoff, M., & George, M. W. (2015). Applying green chemistry to the photochemical route to artemisinin. Nature Chem, 7, 489–495. https://doi.org/10.1038/nchem.2261
Kopetzki, D., Lévesque, F., & Seeberger, P. H. (2013). A continuous-flow process for the synthesis of artemisinin. Chemistry—A European Journal, 19, 5450–5456. https://doi.org/10.1002/chem.201204558
Article CAS PubMed Google Scholar
Montagnon, T., Tofi, M., & Vassilikogiannakis, G. (2008). Using singlet oxygen to synthesize polyoxygenated natural products from furans. Accounts of Chemical Research, 41, 1001–1011. https://doi.org/10.1021/ar800023v
Article CAS PubMed Google Scholar
Ghogare, A. A., & Greer, A. (2016). Using singlet oxygen to synthesize natural products and drugs. Chemical Reviews, 116, 9994–10034. https://doi.org/10.1021/acs.chemrev.5b00726
Article CAS PubMed Google Scholar
Richard, J.-A. (2009). Singlet oxygen. Synlett, 2009, 1187–1188. https://doi.org/10.1055/s-0028-1088111
Al-Nu’airat, J., Oluwoye, I., Zeinali, N., Altarawneh, M., & Dlugogorski, B. Z. (2021). Review of chemical reactivity of singlet oxygen with organic fuels and contaminants. Chemical Record, 21, 315–342. https://doi.org/10.1002/tcr.202000143
Article CAS PubMed Google Scholar
Pibiri, I., Buscemi, S., Palumbo Piccionello, A., & Pace, A. (2018). Photochemically produced singlet oxygen: Applications and perspectives. ChemPhotoChem, 2, 535–547. https://doi.org/10.1002/cptc.201800076
Schmidt, R. (2006). Photosensitized generation of singlet oxygen. Photochemistry and Photobiology, 82, 1161–1177. https://doi.org/10.1562/2006-03-03-lR-833
Article CAS PubMed Google Scholar
Mehraban, N., & Freeman, H. S. (2015). Developments in PDT sensitizers for increased selectivity and singlet oxygen production. Materials, 8, 4421–4456. https://doi.org/10.3390/ma8074421
Article CAS PubMed PubMed Central Google Scholar
Sánchez-Arroyo, A. J., Palao, E., Agarrabeitia, A. R., Ortiz, M. J., & García-Fresnadillo, D. (2016). Towards improved halogenated BODIPY photosensitizers: Clues on structural designs and heavy atom substitution patterns. Physical Chemistry Chemical Physics: PCCP, 19, 69–72. https://doi.org/10.1039/C6CP06448E
Article CAS PubMed Google Scholar
Gorman, A., Killoran, J., O’Shea, C., Kenna, T., Gallagher, W. M., & O’Shea, D. F. (2004). In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 126, 10619–10631. https://doi.org/10.1021/ja047649e
Article CAS PubMed Google Scholar
Mettra, B., Liao, Y. Y., Gallavardin, T., Armagnat, C., Pitrat, D., Baldeck, P., Bahers, T. L., Monnereau, C., & Andraud, C. (2018). A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores. Physical Chemistry Chemical Physics: PCCP, 20, 3768–3783. https://doi.org/10.1039/C7CP06535C
Article CAS PubMed Google Scholar
Ashen-Garry, D., & Selke, M. (2014). Singlet oxygen generation by cyclometalated complexes and applications. Photochemistry and Photobiology, 90, 257–274. https://doi.org/10.1111/php.12211
Article CAS PubMed Google Scholar
Arnbjerg, J., Paterson, M. J., Nielsen, C. B., Jørgensen, M., Christiansen, O., & Ogilby, P. R. (2007). One- and two-photon photosensitized singlet oxygen production: Characterization of aromatic ketones as sensitizer standards. Journal of Physical Chemistry A, 111, 5756–5767. https://doi.org/10.1021/jp071197l
Article CAS PubMed Google Scholar
Westberg, M., Bregnhøj, M., Etzerodt, M., & Ogilby, P. R. (2017). No photon wasted: An efficient and selective singlet oxygen photosensitizing protein. The Journal of Physical Chemistry B, 121, 9366–9371. https://doi.org/10.1021/acs.jpcb.7b07831
Article CAS PubMed Google Scholar
Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., Braun, A. M., & Hansen, H.-J. (1991). 1H-phenalen-1-one: Photophysical properties and singlet-oxygen production. Helvetica Chimica Acta, 74, 79–90. https://doi.org/10.1002/hlca.19910740110
Galán, L. A., Castán, J. M. A., Dalinot, C., Marqués, P. S., Blanchard, P., Maury, O., Cabanetos, C., Bahers, T. L., & Monnereau, C. (2020). Theoretical and experimental investigation on the intersystem crossing kinetics in benzothioxanthene imide luminophores, and their dependence on substituent effects. Physical Chemistry Chemical Physics: PCCP, 22, 12373–12381. https://doi.org/10.1039/D0CP01072C
Zhang, X., Wang, Z., Hou, Y., Yan, Y., Zhao, J., & Dick, B. (2021). Recent development of heavy-atom-free triplet photosensitizers: Molecular structure design, photophysics and application. J Mater Chem C, 9, 11944–11973. https://doi.org/10.1039/D1TC02535J
Yan, Y., Sukhanov, A. A., Bousquet, M. H. E., Guan, Q., Zhao, J., Voronkova, V. K., Escudero, D., Barbon, A., Xing, Y., Gurzadyan, G. G., & Jacquemin, D. (2021). Does twisted π-conjugation framework always induce efficient intersystem crossing? A case study with benzo[b]- and [a]phenanthrene-fused BODIPY derivatives and identification of a dark state. The Journal of Physical Chemistry B, 125, 6280–6295. https://doi.org/10.1021/acs.jpcb.1c03189
Article CAS PubMed Google Scholar
Zhao, J., Chen, K., Hou, Y., Che, Y., Liu, L., & Jia, D. (2018). Recent progress in heavy atom-free organic compounds showing unexpected intersystem crossing (ISC) ability. Organic & Biomolecular Chemistry, 16, 3692–3701. https://doi.org/10.1039/C8OB00421H
Comments (0)