Rosenberg, B., Vancamp, L., Trosko, J. E., & Mansour, V. H. (1969). Platinum compounds: A new class of potent antitumour agents. Nature, 222, 385–386. https://doi.org/10.1038/222385a0
Article CAS PubMed Google Scholar
Medici, S., Peana, M., Nurchi, V. M., Lachowicz, J. A., Crisponi, G., & Zoroddu, M. A. (2015). Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 284, 329–350. https://doi.org/10.1016/j.ccr.2014.08.002
Zhang, Ch., Xu, Ch., Gao, X., & Yao, Q. (2022). Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 12(5), 2115–2132. https://doi.org/10.7150/thno.69424
Article CAS PubMed PubMed Central Google Scholar
Bonnet, S. (2018). Why developing PhotoActivated chemotherapy? Dalton Transactions, 47(31), 10330–10343. https://doi.org/10.1039/C8DT01585F
Article CAS PubMed Google Scholar
Brown, S. B., Linnell, E. R. H., Brown, A., & Walker, I. (2004). The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 5(8), 497–508. https://doi.org/10.1016/s1470-2045(04)01529-3
Article CAS PubMed Google Scholar
Szacilowski, K., Macyk, W., Drzewiecka-Matusek, A., Brindell, M., & Stochel, G. (2005). Bioinorganic photochemistry: Frontiers and mechanisms. Chemical Reviews, 105(6), 2647–2694. https://doi.org/10.1021/cr030707e
Article CAS PubMed Google Scholar
Bednarski, P. J., Mackay, F. S., & Sadler, P. J. (2007). Photoactivatable platinum complexes. Anti-Cancer Agents in Medicinal Chemistry, 7(1), 75–93. https://doi.org/10.2174/187152007779314053
Article CAS PubMed Google Scholar
Ronconi, L., & Sadler, P. J. (2007). Using coordination chemistry to design new medicines. Coordination Chemistry Reviews, 251(13–14), 1633–1647. https://doi.org/10.1016/j.ccr.2006.11.017
Farrer, N. J., & Sadler, P. J. (2008). Photochemotherapy: Targeted activation of metal anticancer complexes. Australian Journal of Cheimstry, 61(9), 669–674. https://doi.org/10.1071/CH08088
Smith, N. A., & Sadler, P. J. (2013). Photoactivatable metal complexes: From theory to applications in biotechnology and medicine. Philosophical Transactions of the Royal Society A, 371, 20120519. https://doi.org/10.1098/rsta.2012.0519
Farrer, N. J., Salassa, L., & Sadler, P. J. (2009). Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Transactions. https://doi.org/10.1039/B917753A
Knoll, J. D., & Turro, C. (2015). Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coordination Chemistry Reviews, 282–283, 110–126. https://doi.org/10.1016/j.ccr.2014.05.018
Article CAS PubMed PubMed Central Google Scholar
Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chemical Reviews, 116(5), 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597
Article CAS PubMed PubMed Central Google Scholar
Gurruchaga-Pereda, V. J., Martínez, A., Terenzi, A., & Salassa, L. (2019). Anticancer platinum agents and light. Inorganica Chimica Acta, 495, 118981. https://doi.org/10.1016/j.ica.2019.118981
Monro, S., Colon, K. L., Yin, H., Roque, J., III., Konda, P., Gujar, S. H., Hummel, R. P., Lilge, T. L., Cameron, C. G., & McFarland, S. H. A. (2019). Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, 19, 797–828.
Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumor growth. Nature Reviews Cancer, 2, 38–47. https://doi.org/10.1038/nrc704
Article CAS PubMed Google Scholar
Holder, A. A., Swavey, Sh., & Brewer, K. (2004). Design aspects for the development of mixed-metal supramolecular complexes capable of visible light induced photocleavage of DNA. Inorganic Chemistry, 43(1), 303–308. https://doi.org/10.1021/ic035029t
Article CAS PubMed Google Scholar
Wang, J., Higgins, S. L. H., Winkel, B. S. J., & Brewer, K. J. (2011). A new Os, Rh bimetallic with O2 independent DNA cleavage and DNA photobinding with red therapeutic light excitation. Chemical Communications, 47, 9786–9788. https://doi.org/10.1039/C1CC11562F
Article CAS PubMed Google Scholar
Wang, J., Zigler, D. F., Hurst, N., Othee, H., Winkel, B. S. J., & Brewer, K. J. (2012). A new, bioactive structural motif: Visible light induced DNA photobinding and oxygen independent photocleavage by RuII, RhIII bimetallics. Journal of Inorganic Biochemistry, 116, 135–139. https://doi.org/10.1016/j.jinorgbio.2012.06.015
Article CAS PubMed Google Scholar
Wang, J., Newman, J., Higgins, S. L., Brewer, K. M., Winkel, B. S., & Brewer, K. J. (2013). Red-light-induced inhibition of DNA replication and amplification by PCR with an Os/Rh supramolecule. Angewandte Chemie International Edition, 52(4), 1262–1265. https://doi.org/10.1002/anie.201207083
Article CAS PubMed Google Scholar
Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Wicke, S. E., Bacsa, J., Dunbar, K. R., & Turro, C. (2004). DNA binding and photocleavage in vitro by new dirhodium(II) dppz complexes: Correlation to cytotoxicity and photocytotoxicity. Inorganic Chemistry, 43(26), 8510–8519. https://doi.org/10.1021/ic049091h
Article CAS PubMed Google Scholar
Angeles-Boza, A. M., Bradley, P. M., Fu, P.K.-L., Shatruk, M., Hilfiger, M. G., Dunbar, K. R., & Turro, C. (2005). Photocytotoxicity of a new Rh2(II, II) complex: Increase in cytotoxicity upon irradiation similar to that of PDT agent hematoporphyrin. Inorganic Chemistry, 44(21), 7262–7264. https://doi.org/10.1021/ic0500715
Article CAS PubMed Google Scholar
Lutterman, D. A., Fu, P.K.-L., & Turro, C. (2006). cis-[Rh2(µ-O2CCH3)2(CH3CN)6]2+ as a photoactivated cisplatin analog. Journal of American Chemical Society, 128(3), 738–739. https://doi.org/10.1021/ja057620q
Angeles-Boza, A. M., Chifotides, H. T., Aguirre, J. D., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2006). Dirhodium(II, II) complexes: Molecular characteristics that affect in vitro activity. Journal of Medical Chemistry, 49(23), 6841. https://doi.org/10.1021/jm060592h
Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Turro, C., Pellois, J.-P., & Dunbar, K. R. (2009). Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Transactions. https://doi.org/10.1039/B915357H
Joyce, L. E., Aguirre, J. D., Angeles-Boza, A. M., Chouai, A., Fu, P.K.-L., Dunbar, K. R., & Turro, C. (2010). Photophysical properties, DNA photocleavage, and photocytotoxicity of a series of dppn dirhodium(II, II) complexes. Inorganic Chemistry, 49(12), 5371–5376. https://doi.org/10.1021/ic100588d
Article CAS PubMed Google Scholar
Li, Z., Burya, S. J., Turro, C., & Dunbar, K. R. (2013). Photochemistry and DNA photocleavage by a new unsupported dirhodium(II, II) complex. Philosophical Transactions of the Royal Society A., 371, 20120128. https://doi.org/10.1098/rsta.2012.0128
Lin, S. H., & Turro, C. (2021). dirhodium complexes as panchromatic sensitizers, electrocatalysts, and photocatalysts. Chemistry: A European Journal, 27(17), 5379–5387. https://doi.org/10.1002/chem.202003950
Article CAS PubMed Google Scholar
Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2017). Primary photochemical processes for Pt(IV) diazido complexes prospective in photodynamic therapy of tumors. Dalton Transactions, 46(29), 9440–9450. https://doi.org/10.1039/C7DT01529A
Article CAS PubMed Google Scholar
Vernooij, R. R., Joshi, T., Horbury, M. D., Graham, B., izgorodina, E. I., stavros, vg, sadler, pj, spiccia, l, & wood, br. (2018). spectroscopic studies on photoinduced reactions of the anticancer prodrug, trans, trans, trans-[Pt(N3)2(OH)2(py)2]. Chemistry: A European Journal, 24(22), 5790–5803. https://doi.org/10.1002/chem.201800161
Article CAS PubMed Google Scholar
Zhdankin, G. I., Grivin, V. P., Plyusnin, V. F., Tkachenko, P. A., Vasilchenko, D. B., & Glebov, E. M. (2023). Chain photosolvation of trans, trans, trans-[PtIV(py)2(N3)2(OH)2] complex prospective as light-activated antitumor agent. Mendeleev Communications, 33(1), 61–63. https://doi.org/10.1016/j.mencom.2023.01.019
Matveeva, S. G., Shushakov, A. A., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Zadesenets, A. V., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2018). cis, fac-[RuCl2(DMSO)3(H2O)] complex exhibits ultrafast photochemical aquation/rearrangement. Photochemical & Photobiological Sciences, 17(9), 1222–1228. https://doi.org/10.1039/C8PP00232K
Shushakov, A. A., Matveeva, S. G., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Vasilchenko, D. B., Melnikov, A. A., Chekalin, S. V., & Glebov, E. M. (2020). Mechanistic study of the trans, cis, cis-[RuCl2(DMSO)2(H2O)2] complex photochemistry in aqueous solutions. Photochemical & Photobiological Sciences, 19(9), 1222–1229. https://doi.org/10.1039/D0PP00178C
Glebov, E. M.
Comments (0)