Three-week sprint interval training (SIT) reduces cell-free DNA and low-frequency fatigue but does not induce VO2max improvement in older men

Adamson S, Kavaliauskas M, Lorimer R, Babraj J (2020) The impact of sprint interval training frequency on blood glucose control and physical function of older adults. Int J Environ Res Public Health 7(2):454. https://doi.org/10.3390/ijerph17020454

Article  CAS  Google Scholar 

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. https://doi.org/10.1152/physrev.00015.2007

Article  CAS  PubMed  Google Scholar 

Atamaniuk J, Vidotto C, Kinzlbauer M, Bachl N, Tiran B, Tschan H (2010) Cell-free plasma DNA and purine nucleotide degradation markers following weightlifting exercise. Eur J Appl Physiol 110:695–701. https://doi.org/10.1007/s00421-010-1532-5

Article  CAS  PubMed  Google Scholar 

Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170. https://doi.org/10.1016/j.cell.2010.05.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beiter T, Fragasso A, Hudemann J, Nieß AM, Simon P (2011) Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo. Clinical chemistry 57(4):633–636. http://www.clinchem.org/content/vol57/

Bogdanis GC (2012) Effects of physical activity and inactivity on muscle fatigue. Front Physiol 3:142. https://doi.org/10.3389/fphys.2012.00142

Article  PubMed  PubMed Central  Google Scholar 

Brazaitis M, Paulauskas H, Skurvydas A, Budde H, Daniuseviciute L, Eimantas N (2016) Brief rewarming blunts hypothermia-induced alterations in sensation, motor drive and cognition. Front Physiol 7:592. https://doi.org/10.3389/fphys.2016.00592

Article  PubMed  PubMed Central  Google Scholar 

Celec P, Vlková B, Lauková L, Bábíčková J, Boor P (2018) Cell-free DNA: The role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med 20:E1. https://doi.org/10.1017/erm.2017.12

Article  CAS  PubMed  Google Scholar 

Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, Venckunas T (2020) Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports 30(6):998–1007. https://doi.org/10.1111/sms.13655

Article  PubMed  Google Scholar 

Crupi AN, Nunnelee JS, Taylor DJ, Thomas A, Vit JP, Riera CE, Gottlieb RA, Goodridge HS (2018) Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging (Albany NY) 10(11):3327–3352. https://doi.org/10.18632/aging.101643

Article  CAS  PubMed  Google Scholar 

Eimantas N, Ivanove S, Baranauskiene N, Solianik R, Brazaitis M (2022) Modulation of neuromuscular excitability in response to acute noxious heat exposure has no additional effects on central and peripheral fatigability. Front Physiol 13:936885. https://doi.org/10.3389/fphys.2022.936885

Article  PubMed  PubMed Central  Google Scholar 

Estébanez B, Visavadiya NP, de Paz JA, Whitehurst M, Cuevas MJ, González-Gallego J, Huang C-J (2021) Resistance Training Diminishes the Expression of Exosome CD63 Protein without Modification of Plasma miR-146a-5p and cfDNA in the Elderly. Nutrients 13(2):665. https://doi.org/10.3390/nu13020665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fatouros IG, Destouni A, Margonis K, Jamurtas AZ, Vrettou C, Kouretas D, Mastorakos G, Mitrakou A, Taxildaris K, Kanavakis E, Papassotiriou I (2006) Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clin Chem 52(9):1820–1824. https://doi.org/10.1373/clinchem.2006.070417

Article  CAS  PubMed  Google Scholar 

Ferrandi PJ, Fico BG, Whitehurst M, Zourdos MC, Bao F, Dodge KM, Rodriguez AL, Pena G, Huang CJ (2018) Acute high-intensity interval exercise induces comparable levels of circulating cell-free DNA and Interleukin-6 in obese and normal-weight individuals. Life Sci 202:161–166. https://doi.org/10.1016/j.lfs.2018.04.007

Article  CAS  PubMed  Google Scholar 

Ferrari AU, Radaelli A, Centola M (2003) Invited review: aging and the cardiovascular system. J Appl Physiol 95(6):2591–2597. https://doi.org/10.1152/japplphysiol.00601.2003

Article  PubMed  Google Scholar 

Fridlich O, Peretz A, Fox-Fisher I, Pyanzin S, Dadon Z, Shcolnik E, Dor Y (2023) Elevated cfDNA after exercise is derived primarily from mature polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep Med. https://doi.org/10.1016/j.xcrm.2023.101074

Article  PubMed  PubMed Central  Google Scholar 

Gibala MJ, Jones AM (2013) Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser 76:51-60. https://doi.org/10.1159/000350256

Article  Google Scholar 

Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084. https://doi.org/10.1113/jphysiol.2011.224725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ (2016) Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS One 11(4):e0154075. https://doi.org/10.1371/journal.pone.0154075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastan SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–610. https://doi.org/10.1038/nri3041

Article  CAS  PubMed  Google Scholar 

Haller N, Tug S, Breitbach S, Jörgensen A, Simon P (2017) Increases in circulating cell-free DNA during aerobic running depend on intensity and duration. Int J Sports Physiol Perform 12(4):455–462. https://doi.org/10.1123/ijspp.2015-0540

Article  PubMed  Google Scholar 

Hazell TJ, MacPherson REK, Gravelle BMR, Lemon PWR (2010) 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol 110(1):153–160. https://doi.org/10.1007/s00421-010-1474-y

Article  PubMed  Google Scholar 

Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB, van Loon LJC (2018) Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell reports 22(11):2837–2848. https://doi.org/10.1016/j.celrep.2018.02.069

Article  CAS  PubMed  Google Scholar 

Hwang CL, Yoo JK, Kim HK, Hwang MH, Handberg EM, Petersen JW, Christou D (2016) Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol 82:112–119. https://doi.org/10.1016/j.exger.2016.06.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito S (2019) High-intensity interval training for health benefits and care of cardiac diseases - The key to an efficient exercise protocol. World J Cardiol 11(7):171–188. https://doi.org/10.4330/wjc.v11.i7.171

Article  PubMed  PubMed Central  Google Scholar 

Jylhävä J, Kotipelto T, Raitala A, Jylhä M, Hervonen A, Hurme M (2011) Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: the vitality 90+ study. Mech Ageing Dev 132(1–2):20–26. https://doi.org/10.1016/j.mad.2010.11.001

Article  CAS  PubMed  Google Scholar 

Jylhävä J, Jylhä M, Lehtimäki T, Hervonen A, Hurme M (2012) Circulating cell-free DNA is associated with mortality and inflammatory markers in nonagenarians: the vitality 90+ study. Exp Gerontol 47(5):372–378. https://doi.org/10.1016/j.exger.2012.02.011

Article  CAS  PubMed  Google Scholar 

Kananen L, Hurme M, Bürkle A, Moreno-Villanueva M, Bernhardt J, Debacq-Chainiaux F, Grubeck-Loebenstein B, Malavolta M, Basso A, et al (2023) Circulating cell-free DNA in health and disease - the relationship to health behaviours, ageing phenotypes and metabolomics. GeroScience 45(1):85–103. https://doi.org/10.1007/s11357-022-00590-8

Article  CAS  PubMed  Google Scholar 

Kent-Braun JA, Av Ng, Doyle JW, Towse TF, Braun K (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823. https://doi.org/10.1152/japplphysiol.00091.2002

Article  CAS  PubMed  Google Scholar 

Konopka AR, Suer MK, Wolff CA, Harber MP (2014) Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 69(4):371–378. https://doi.org/10.1093/gerona/glt107

Article  CAS  Google Scholar 

Korabecna M, Zinkova A, Brynychova I, Chylikova B, Prikryl P, Sedova L, Neuzil P, Seda O (2020) Cell-free DNA in plasma as an essential immune system regulator. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-74288-2

Article  CAS  Google Scholar 

Krüger RL, Aboodarda SJ, Jaimes LM, Vaz MA, Samozino P, Millet GY (2020) Age-related neuromuscular fatigue and recovery after cycling: measurements in isometric and dynamic modes. Exp Gerontol 133:110877. https://doi.org/10.1016/J.EXGER.2020.110877

Article  PubMed  Google Scholar 

Krusnauskas R, Eimantas N, Baranauskiene N, Venckunas T, Snieckus A, Brazaitis M, Westerblad H, Kamandulis S (2020) Response to Three Weeks of Sprint Interval Training Cannot Be Explained by the Exertional Level. Medicina 56(8):395. https://doi.org/10.3390/medicina56080395

Article  PubMed  PubMed Central 

Comments (0)

No login
gif