Peripheral fatigue regulation during knee extensor exercise in type 1 diabetes and consequences on the force–duration relationship

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  CAS  Google Scholar 

Almeida S, Riddell MC, Cafarelli E (2008) Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus. Muscle Nerve 37:231–240. https://doi.org/10.1002/mus.20919

Article  CAS  Google Scholar 

Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045. https://doi.org/10.1249/MSS.0b013e31821f59ab

Article  Google Scholar 

Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173. https://doi.org/10.1113/jphysiol.2007.141838

Article  CAS  Google Scholar 

Amann M, Proctor LT, Sebranek JJ et al (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283. https://doi.org/10.1113/jphysiol.2008.163303

Article  CAS  Google Scholar 

Amann M, Romer LM, Subudhi AW et al (2007) Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol 581:389–403. https://doi.org/10.1113/jphysiol.2007.129700

Article  CAS  Google Scholar 

Amann M, Venturelli M, Ives SJ et al (2013) Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol 115:355–364. https://doi.org/10.1152/japplphysiol.00049.2013

Article  Google Scholar 

Andersen H (1998) Muscular endurance in long-term IDDM patients. Diabetes Care 21:604–609. https://doi.org/10.2337/diacare.21.4.604

Article  CAS  Google Scholar 

Andersen H, Schmitz O, Nielsen S (2005) Decreased isometric muscle strength after acute hyperglycaemia in Type 1 diabetic patients. Diabet Med 22:1401–1407. https://doi.org/10.1111/j.1464-5491.2005.01649.x

Article  CAS  Google Scholar 

Bartolo E, Thorne CS, Gatt A, Formosa C (2019) The influence of peripheral arterial disease on lower limb surface myoelectric signals in patients living with type II diabetes mellitus. Gait Posture 73:228–232. https://doi.org/10.1016/j.gaitpost.2019.07.254

Article  Google Scholar 

Beck TW (2013) The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res 27:2323–2337. https://doi.org/10.1519/JSC.0b013e318278eea0

Article  Google Scholar 

Bhati P, Hussain ME (2023) Impact of resistance training on muscle fatigue in type 2 diabetes mellitus patients during dynamic fatigue protocol. Physiother Theory Pract 39:26–38. https://doi.org/10.1080/09593985.2021.2001882

Article  Google Scholar 

Black MI, Jones AM, Blackwell JR et al (1985) (2017) Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol Bethesda Md 122:446–459. https://doi.org/10.1152/japplphysiol.00942.2016

Article  CAS  Google Scholar 

Blain GM, Mangum TS, Sidhu SK et al (2016) Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 594:5303–5315. https://doi.org/10.1113/JP272283

Article  CAS  Google Scholar 

Broxterman RM, Hureau TJ, Layec G et al (2018) Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 596:2301–2314. https://doi.org/10.1113/JP275817

Article  CAS  Google Scholar 

Broxterman RM, Richardson RS (1985) Amann M (2015) Less peripheral fatigue after prior exercise is not evidence against the regulation of the critical peripheral fatigue threshold. J Appl Physiol Bethesda Md 119:1520. https://doi.org/10.1152/japplphysiol.00759.2015

Article  CAS  Google Scholar 

Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37. https://doi.org/10.1007/978-1-4615-0713-0_5

Article  Google Scholar 

Burnley M (1985) (2009) Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans. J Appl Physiol Bethesda Md 106:975–983. https://doi.org/10.1152/japplphysiol.91474.2008

Article  Google Scholar 

Burnley M, Vanhatalo A (1985) Jones AM (2012) Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol Bethesda Md 113:215–223. https://doi.org/10.1152/japplphysiol.00022.2012

Article  Google Scholar 

Crowther GJ, Milstein JM, Jubrias SA et al (2003) Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol-Endocrinol Metab 284:E655–E662. https://doi.org/10.1152/ajpendo.00343.2002

Article  CAS  Google Scholar 

Dimitrov GV, Arabadzhiev TI, Mileva KN et al (2006) Muscle fatigue during dynamic contractions assessed by new spectral indices. Med Sci Sports Exerc 38:1971–1979. https://doi.org/10.1249/01.mss.0000233794.31659.6d

Article  Google Scholar 

Duchateau J, Enoka RM (2011) Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 1409:42–61. https://doi.org/10.1016/j.brainres.2011.06.011

Article  CAS  Google Scholar 

Eshima H, Poole DC, Kano Y (2014) In vivo calcium regulation in diabetic skeletal muscle. Cell Calcium 56:381–389. https://doi.org/10.1016/j.ceca.2014.08.008

Article  CAS  Google Scholar 

Essén B, Jansson E, Henriksson J et al (1975) Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand 95:153–165. https://doi.org/10.1111/j.1748-1716.1975.tb10038.x

Article  Google Scholar 

Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

Article  Google Scholar 

Fritschi C, Quinn L (2010) Fatigue in patients with diabetes: a review. J Psychosom Res 69:33–41. https://doi.org/10.1016/j.jpsychores.2010.01.021

Article  Google Scholar 

Fritzsche K, Blüher M, Schering S et al (2008) Metabolic profile and nitric oxide synthase expression of skeletal muscle fibers are altered in patients with type 1 diabetes. Exp Clin Endocrinol Diabetes off J Ger Soc Endocrinol Ger Diabetes Assoc 116:606–613. https://doi.org/10.1055/s-2008-1073126

Article  CAS  Google Scholar 

Goedendorp MM, Tack CJ, Steggink E et al (2014) Chronic fatigue in type 1 diabetes: highly prevalent but not explained by hyperglycemia or glucose variability. Diabetes Care 37:73–80. https://doi.org/10.2337/dc13-0515

Article  Google Scholar 

Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347. https://doi.org/10.1126/science.126.3287.1345

Article  ADS  CAS  Google Scholar 

Hureau TJ, Broxterman RM, Weavil JC (2016) The mechanistic basis of the power-time relationship: potential role of the group III/IV muscle afferents. J Physiol 594:7165–7166. https://doi.org/10.1113/JP273333

Article  CAS  Google Scholar 

Hureau TJ, Olivier N, Millet GY et al (2014) Exercise performance is regulated during repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. Exp Physiol 99:951–963. https://doi.org/10.1113/expphysiol.2014.077974

Article  Google Scholar 

Hureau TJ, Weavil JC, Thurston TS et al (1985) (2019) Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. J Appl Physiol Bethesda Md 127:1257–1266. https://doi.org/10.1152/japplphysiol.00490.2019

Article  CAS  Google Scholar 

Karatzaferi C, de Haan A, van Mechelen W, Sargeant AJ (2001) Metabolism changes in single human fibres during brief maximal exercise. Exp Physiol 86:411–415. https://doi.org/10.1113/eph8602223

Article  CAS  Google Scholar 

Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12:345–364. https://doi.org/10.1111/j.1399-5448.2010.00699.x

Article  CAS  Google Scholar 

Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444. https://doi.org/10.1002/mus.10047

Article  Google Scholar 

Lc F, Ga F, Sk L et al (2018) Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol Bethesda Md. https://doi.org/10.1152/japplphysiol.00930.2017

Article  Google Scholar 

Lung C-W, Liau B-Y, Peters JA et al (2021) Effects of various walking intensities on leg muscle fatigue and plantar pressure distributions. BMC Musculoskelet Disord 22:831. https://doi.org/10.1186/s12891-021-04705-8

Article  Google Scholar 

Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234. https://doi.org/10.1007/s00421-010-1502-y

Article  Google Scholar 

Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564. https://doi.org/10.1113/jphysiol.1954.sp005070

Article  CAS  Google Scholar 

Monteiro-Oliveira BB, Coelho-Oliveira AC, Paineiras-Domingos LL et al (2022) Use of surface electromyography to evaluate effects of whole-body vibration exercises on neuromuscular activation and muscle strength in the elderly: a systematic review. Disabil Rehabil 44:7368–7377. https://doi.org/10.1080/09638288.2021.1994030

Article  Google Scholar 

Morgan PT, Bowtell JL, Vanhatalo A et al (2018) Acute acetaminophen ingestion improves performance and muscle activation during maximal intermittent knee extensor exercise. Eur J Appl Physiol 118:595–605. https://doi.org/10.1007/s00421-017-3794-7

Article  CAS 

Comments (0)

No login
gif