The influence of high-load and combined high- and low-load resistance training on electromyographic behavior during an absolute muscular endurance task

Bartuzi P, Tokarski T, Roman-Liu D (2010) The effect of the fatty tissue on EMG signal in young women. Acta Bioeng Biomech 12:87–92

PubMed  Google Scholar 

Beausejour JP, Knowles KS, Pagan JI et al (2024) The effects of resistance training to near volitional failure on motor unit recruitment during neuromuscular fatigue. PeerJ 12:e18163

Article  PubMed  PubMed Central  Google Scholar 

Berg HE, Tedner B, Tesch PA (1993) Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 148:379–385

Article  PubMed  CAS  Google Scholar 

Burgomaster KA, Howarth KR, Phillips SM et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

Article  PubMed  CAS  Google Scholar 

Campos GE, Luecke TJ, Wendeln HK et al (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88:50–60

Article  PubMed  Google Scholar 

Christova P, Kossev A (2001) Human motor unit recruitment and derecruitment during long lasting intermittent contractions. J Electromyogr Kinesiol 11:189–196. https://doi.org/10.1016/S1050-6411(00)00052-3

Article  PubMed  CAS  Google Scholar 

Contessa P, De Luca CJ, Kline JC (2016) The compensatory interaction between motor unit firing behavior and muscle force during fatigue. J Neurophysiol 116:1579–1585

Article  PubMed  PubMed Central  Google Scholar 

Dankel SJ, Counts BR, Barnett BE et al (2017) Muscle adaptations following 21 consecutive days of strength test familiarization compared with traditional training. Muscle Nerve 56:307–314

Article  PubMed  Google Scholar 

De Luca CJ, Hostage EC (2010) Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. J Neurophysiol 104:1034–1046

Article  PubMed  PubMed Central  Google Scholar 

De Luca CJ, LeFever RS, McCue MP, Xenakis AP (1982) Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol 329:113–128

Article  PubMed  PubMed Central  Google Scholar 

Del Vecchio A, Casolo A, Negro F et al (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597:1873–1887

Article  PubMed  PubMed Central  Google Scholar 

Dimmick HL, Miller JD, Sterczala AJ et al (2018) Vastus lateralis muscle tissue composition and motor unit properties in chronically endurance-trained vs. sedentary women. Eur J Appl Physiol 118:1789–1800

Article  PubMed  Google Scholar 

Drowatzky JN, Zuccato FC (1967) Interrelationships between selected measures of static and dynamic balance. Res Q Am Assoc Health Phys Educ Recrea 38:509–510. https://doi.org/10.1080/10671188.1967.10613424

Article  CAS  Google Scholar 

Eklund D, Pulverenti T, Bankers S et al (2015) Neuromuscular adaptations to different modes of combined strength and endurance training. Int J Sports Med 36:120–129

PubMed  CAS  Google Scholar 

Erskine RM, Fletcher G, Folland JP (2014) The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol 114:1239–1249. https://doi.org/10.1007/s00421-014-2855-4

Article  PubMed  Google Scholar 

Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

Article  PubMed  Google Scholar 

Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121:1616–1623

Article  PubMed  Google Scholar 

Farina D, Merletti R, Enoka RM (2014) The extraction of neural strategies from the surface EMG: an update. J Appl Physiol 117:1215–1230

Article  PubMed  PubMed Central  Google Scholar 

Fink J, Kikuchi N, Yoshida S et al (2016) Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus 5:1–8

Article  Google Scholar 

Fischetti F, Cataldi S, Bonavolonta V et al (2020) Hypertrophic adaptations of lower limb muscles in response to three different resistance training regimens. Acta Medica 36:3235

Google Scholar 

Fisher JP, Steele J (2017) Heavier and lighter load resistance training to momentary failure produce similar increases in strength with differing degrees of discomfort. Muscle Nerve 56:797–803

Article  PubMed  Google Scholar 

Fisher J, Steele J, Smith D (2017) High- and low-load resistance training: interpretation and practical application of current research findings. Sports Med 47:393–400. https://doi.org/10.1007/s40279-016-0602-1

Article  PubMed  Google Scholar 

Fliss MD, Stevenson J, Mardan-Dezfouli S et al (2022) Higher-and lower-load resistance exercise training induce load-specific local muscle endurance changes in young women: a randomised trial. Appl Physiol Nutr Metab 47:1143–1159

Article  PubMed  CAS  Google Scholar 

Fragala MS, Cadore EL, Dorgo S et al (2019) Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000003230

Article  PubMed  Google Scholar 

Franchi MV, Longo S, Mallinson J et al (2018) Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand Med Sci Sports 28:846–853. https://doi.org/10.1111/sms.12961

Article  CAS  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

Article  PubMed  CAS  Google Scholar 

Garland SJ (1991) Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 435:547–558

Article  PubMed  PubMed Central  CAS  Google Scholar 

Goto K, Nagasawa M, Yanagisawa O et al (2004) Muscular adaptations to combinations of high- and low-intensity resistance exercises. J Strength Cond Res 18:730–737

PubMed  Google Scholar 

Häkkinen K, Newton RU, Gordon SE et al (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53:B415–B423

Article  PubMed  Google Scholar 

Haun CT, Vann CG, Osburn SC et al (2019) Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS ONE 14:e0215267

Article  PubMed  PubMed Central  CAS  Google Scholar 

Helms ER, Cronin J, Storey A, Zourdos MC (2016) Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength Cond J 38:42–49

Article  PubMed  PubMed Central  Google Scholar 

Herda TJ, Weir JP, Ryan ED et al (2009) Reliability of absolute versus log-transformed regression models for examining the torque-related patterns of response for mechanomyographic amplitude. J Neurosci Methods 179:240–246

Article  PubMed  Google Scholar 

Herda TJ, Housh TJ, Fry AC et al (2010) A noninvasive, log-transform method for fiber type discrimination using mechanomyography. J Electromyogr Kinesiol 20:787–794

Article  PubMed  Google Scholar 

Herda TJ, Siedlik JA, Trevino MA et al (2015) Motor unit control strategies of endurance-versus resistance-trained individuals. Muscle Nerve 52:832–843

Article  PubMed  Google Scholar 

Comments (0)

No login
gif