The benefit of knowledge: postural response modulation by foreknowledge of equilibrium perturbation in an upper limb task

Alexandrov Av, Frolov Aa, Horak Fb, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93(5):309–322. https://doi.org/10.1007/s00422-005-0004-1

Article  CAS  Google Scholar 

Baker JM (2018) Gait disorders. Am J Med 131(6):602–607. https://doi.org/10.1016/j.amjmed.2017.11.051

Article  Google Scholar 

Belen’kiĭ VE, Gurfinkel’ VS, Pal’tsev EI (1967) Control elements of voluntary movements. Biofizika 12(1):135–141

Google Scholar 

Bergmann J, Kramer A, Gruber M (2013) Repetitive hops induce postactivation potentiation in triceps surae as well as an increase in the jump height of subsequent maximal drop jumps. PLoS ONE 8(10):e77705. https://doi.org/10.1371/journal.pone.0077705

Article  ADS  CAS  Google Scholar 

Bergui M, Lopiano L, Paglia G, Quattrocolo G, Scarzella L, Bergamasco B (1992) Stretch reflex of quadriceps femoris and its relation to rigidity in Parkinson’s disease. Acta Neurol Scand 86(3):226–229. https://doi.org/10.1111/j.1600-0404.1992.tb05075.x

Article  CAS  Google Scholar 

Berret B, Bonnetblanc F, Papaxanthis C, Pozzo T (2009) Modular control of pointing beyond arm’s length. J Neurosci 29(1):191–205. https://doi.org/10.1523/JNEUROSCI.3426-08.2009

Article  CAS  Google Scholar 

Bleuse S, Cassim F, Blatt J-L, Labyt E, Derambure P, Guieu J-D, Defebvre L (2006) Effect of age on anticipatory postural adjustments in unilateral arm movement. Gait Posture 24(2):203–210. https://doi.org/10.1016/j.gaitpost.2005.09.001

Article  Google Scholar 

Bouisset S, Zattara M (1987) Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. J Biomech 20(8):735–742. https://doi.org/10.1016/0021-9290(87)90052-2

Article  CAS  Google Scholar 

Campbell AD, Chua R, Inglis JT, Carpenter MG (2012) Startle induces early initiation of classically conditioned postural responses. J Neurophysiol 108(11):2946–2956. https://doi.org/10.1152/jn.01157.2011

Article  CAS  Google Scholar 

Carlsen AN, Chua R, Inglis JT, Sanderson DJ, Franks IM (2004) Prepared movements are elicited early by startle. J Mot Behav 36(3):253–264. https://doi.org/10.3200/JMBR.36.3.253-264

Article  Google Scholar 

Carlsen AN, Dakin CJ, Chua R, Franks IM (2007) Startle produces early response latencies that are distinct from stimulus intensity effects. Exp Brain Res 176(2):199–205. https://doi.org/10.1007/s00221-006-0610-8

Article  Google Scholar 

Carlsen AN, Maslovat D, Lam MY, Chua R, Franks IM (2011) Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neurosci Biobehav Rev 35(3):366–376. https://doi.org/10.1016/j.neubiorev.2010.04.009

Article  Google Scholar 

Carlsen AN, Maslovat D, Franks IM (2012) Preparation for voluntary movement in healthy and clinical populations: evidence from startle. Clin Neurophysiol 123(1):21–33. https://doi.org/10.1016/j.clinph.2011.04.028

Article  Google Scholar 

Castellote JM, Kofler M (2018) StartReact effects in first dorsal interosseous muscle are absent in a pinch task, but present when combined with elbow flexion. PLoS ONE 13(7):e0201301. https://doi.org/10.1371/journal.pone.0201301

Article  CAS  Google Scholar 

Castellote JM, Valls-Solé J (2019) Temporal relationship between perceptual and physiological events triggered by nociceptive heat stimuli. Sci Rep 9(1):3264. https://doi.org/10.1038/s41598-019-39509-3

Article  ADS  CAS  Google Scholar 

Castellote JM, Kumru H, Queralt A, Valls-Solé J (2007) A startle speeds up the execution of externally guided saccades. Exp Brain Res 177(1):129–136. https://doi.org/10.1007/s00221-006-0659-4

Article  Google Scholar 

Castellote JM, Queralt A, Valls-Solé J (2012) Preparedness for landing after a self-initiated fall. J Neurophysiol 108(9):2501–2508. https://doi.org/10.1152/jn.01111.2011

Article  Google Scholar 

Castellote JM, Kofler M, Mayr A, Saltuari L (2017) Evidence for startle effects due to externally induced lower limb movements: implications in neurorehabilitation. Biomed Res Int 2017:1–13. https://doi.org/10.1155/2017/8471546

Article  Google Scholar 

Cesari P, Piscitelli F, Pascucci F, Bertucco M (2022) Postural threat influences the coupling between anticipatory and compensatory postural adjustments in response to an external perturbation. Neuroscience 490:25–35. https://doi.org/10.1016/j.neuroscience.2022.03.005

Article  CAS  Google Scholar 

Crago PE, Houk JC, Hasan Z (1976) Regulatory actions of human stretch reflex. J Neurophysiol 39(5):925–935. https://doi.org/10.1152/jn.1976.39.5.925

Article  CAS  Google Scholar 

da Costa CSN, Savelsbergh G, Rocha NACF (2010) Sit-to-stand movement in children: a review. J Mot Behav 42(2):127–134. https://doi.org/10.1080/00222891003612763

Article  Google Scholar 

Dakin CJ, Bolton DAE (2018) Forecast or fall: prediction’s importance to postural control. Front Neurol 9:924. https://doi.org/10.3389/fneur.2018.00924

Article  Google Scholar 

Delafontaine A, Vialleron T, Hussein T, Yiou E, Honeine J-L, Colnaghi S (2019) Anticipatory postural adjustments during gait initiation in stroke patients. Front Neurol 10:352. https://doi.org/10.3389/fneur.2019.00352

Article  Google Scholar 

DeLuca M, Low D, Kumari V, Parton A, Davis J, Mohagheghi AA (2022) A systematic review with meta-analysis of the StartReact effect on motor responses in stroke survivors and healthy individuals. J Neurophysiol 127(4):938–945. https://doi.org/10.1152/jn.00392.2021

Article  Google Scholar 

Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59(6):1888–1905. https://doi.org/10.1152/jn.1988.59.6.1888

Article  CAS  Google Scholar 

Dietz V, Quintern J, Sillem M (1987) Stumbling reactions in man: significance of proprioceptive and pre-programmed mechanisms. J Physiol 386(1):149–163. https://doi.org/10.1113/jphysiol.1987.sp016527

Article  CAS  Google Scholar 

Dietz V, Discher M, Trippel M (1994) Task-dependent modulation of short- and long-latency electromyographic responses in upper limb muscles. Electroencephalogr Clin Neurophysiol Evoked Potentials Section 93(1):49–56. https://doi.org/10.1016/0168-5597(94)90091-4

Article  CAS  Google Scholar 

Doemges F, Rack PM (1992a) Changes in the stretch reflex of the human first dorsal interosseous muscle during different tasks. J Physiol 447(1):563–573. https://doi.org/10.1113/jphysiol.1992.sp019018

Article  CAS  Google Scholar 

Doemges F, Rack PM (1992b) Task-dependent changes in the response of human wrist joints to mechanical disturbance. J Physiol 447(1):575–585. https://doi.org/10.1113/jphysiol.1992.sp019019

Article  CAS  Google Scholar 

Evarts EV, Tanji J (1974) Gating of motor cortex reflexes by prior instruction. Brain Res 71(2–3):479–494. https://doi.org/10.1016/0006-8993(74)90992-5

Article  CAS  Google Scholar 

Finley JM, Dhaher YY, Perreault EJ (2013) Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in the ankle extensors. Physiol Rep. https://doi.org/10.1002/phy2.51

Article  Google Scholar 

Fiset F, McFadyen BJ (2020) The switching of trailing limb anticipatory locomotor adjustments is uninfluenced by what the leading limb does, but general time constraints remain. Appl Sci 10(7):2256. https://doi.org/10.3390/app10072256

Article  CAS  Google Scholar 

Forgaard CJ, Franks IM, Maslovat D, Chin L, Chua R (2015) Voluntary reaction time and long-latency reflex modulation. J Neurophysiol 114(6):3386–3399. https://doi.org/10.1152/jn.00648.2015

Article  CAS  Google Scholar 

Forgaard CJ, Franks IM, Bennett K, Maslovat D, Chua R (2018) Mechanical perturbations can elicit triggered reactions in the absence of a startle response. Exp Brain Res 236(2):365–379. https://doi.org/10.1007/s00221-017-5134-x

Article  Google Scholar 

Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M (2019) Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 130(6):925–940. https://doi.org/10.1016/j.clinph.2019.03.008

Article  CAS  Google Scholar 

Ghori GMU, Donne B, Luckwill RG (1995) Relationship between torque and EMG activity of a knee extensor muscle during isokinetic concentric and eccentric actions. J Electromyogr Kinesiol 5(2):109–115. https://doi.org/10.1016/1050-6411(94)00013-C

Article  CAS  Google Scholar 

Hartford W, Lear S, Nimmon L (2019) Stroke survivors’ experiences of team support along their recovery continuum. BMC Health Serv Res 19(1):723. https://doi.org/10.1186/s12913-019-4533-z

Article  CAS  Google Scholar 

Helm M, Ritzmann R, Gollhofer A, Freyler K (2019) Anticipation modulates neuromechanics of drop jumps in known or unknown ground stiffness. PLoS ONE 14(1):e0211276. https://doi.org/10.1371/journal.pone.0211276

Article  CAS  Google Scholar 

Honeycutt CF, Perreault EJ (2012) Planning of ballistic movement following stroke: insights from the startle reflex. PLoS ONE 7(8):e43097. https://doi.org/10.1371/journal.pone.0043097

Article  ADS  CAS  Google Scholar 

Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55(6):1369–1381. https://doi.org/10.1152/jn.1986.55.6.1369

Article  CAS  Google Scholar 

Horak FB, Diener HC, Nashner LM (1989) Influence of central set on human postural responses. J Neurophysiol 62(4):841–853. https://doi.org/10.1152/jn.1989.62.4.841

Article  CAS 

Comments (0)

No login
gif