Aguilar-Navarro M, Munoz G, Salinero JJ, Munoz-Guerra J, Fernandez-Alvarez M, Plata MDM, Del Coso J (2019) Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. https://doi.org/10.3390/nu11020286
Amaro-Gahete FJ, Jurado-Fasoli L, Trivino AR, Sanchez-Delgado G, De-la OA, Helge JW, Ruiz JR (2019) Diurnal variation of maximal fat-oxidation rate in trained male athletes. Int J Sports Physiol Perform 14(8):1140–1146. https://doi.org/10.1123/ijspp.2018-0854
Astorino TA, Terzi MN, Roberson DW, Burnett TR (2011) Effect of caffeine intake on pain perception during high-intensity exercise. Int J Sport Nutr Exerc Metab 21(1):27–32. https://doi.org/10.1123/ijsnem.21.1.27
Benowitz NL (1990) Clinical pharmacolly of caffeine. Ann Rev Med 41:277–288. https://doi.org/10.1146/annurev.me.41.020190.001425
Blaak E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4(6):499–502. https://doi.org/10.1097/00075197-200111000-00006
Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381
Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, Jung CM, O’Neill JS, Wright KPJR (2015) Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aac5125
Cano A, Ventura L, Martinez G, Cugusi L, Caria M, Deriu F (2022) Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. Eur J Appl Physiol 122(1):29–70. https://doi.org/10.1007/s00421-021-04802-5
Chenevière X, Borrani F, Sangsue D, Gojanovic B, Malatesta D (2011) Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab 36(1):88–95. https://doi.org/10.1139/H10-08
Collado-Mateo D, Lavin-Perez AM, Merellano-Navarro E, Coso JD (2020) Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients. https://doi.org/10.3390/nu12123603
Darvakh H, Nikbakht M, Shakerian S, Mousavian A (2014) Effect of circadian rhythm on peak of maximal fat oxidation on non-athletic men. Zahedan Journal of Research in Medical Sciences: 8–11
de Souza JG, Del Coso J, Fonseca FS, Silva BVC, de Souza DB, da Silva Gianoni RL, Filip-Stachnik A, Serrao JC, Claudino JG (2022) Risk or benefit? Side effects of caffeine supplementation in sport: a systematic review. Eur J Nutr. https://doi.org/10.1007/s00394-022-02874-3
Domaszewski P, Pakosz P, Konieczny M, Bączkowicz D, Sadowska-Krępa E (2021) Caffeine-induced effects on human skeletal muscle contraction time and maximal displacement measured by tensiomyography. Nutrients. https://doi.org/10.3390/nu13030815
Dominguez R, Veiga-Herreros P, Sanchez-Oliver AJ, Montoya JJ, Ramos-Alvarez JJ, Miguel-Tobal F, Lago-Rodriguez A, Jodra P (2021) Acute effects of caffeine intake on psychological responses and high-intensity exercise performance. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18020584
Frandsen J, Dahl Vest S, Larsen S, Dela F, Helge JW (2017) Maximal fat oxidation is related to performance in an Ironman triathlon. Int J Sports Med 38(13):975–982. https://doi.org/10.1055/s-0043-117178
Frandsen J, Pistoljevic N, Quesada JP, Amaro-Gahete FJ, Ritz C, Larsen S, Dela F, Helge JW (2020) Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test. J Appl Physiol (1985) 128(3):681–687. https://doi.org/10.1152/japplphysiol.00774.2019
Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55(2):628–634. https://doi.org/10.1152/jappl.1983.55.2.628
Fredholm BB (1995) Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101. https://doi.org/10.1111/j.1600-0773.1995.tb00111.x
Friedlander AL, Casazza GA, Horning MA, Huie MJ. Piacentini MF, Trimmer JK Brooks, GA (1998). Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J. Appl. Physiol. 85 (3): 1175–1186 https://doi.org/10.1152/jappl.1998.85.3.1175
Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, Maciel E, Artioli GG, Roschel H (2017) Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol 123(1):213–220. https://doi.org/10.1152/japplphysiol.00260.2017
Guest N, Corey P, Vescovi J, El-Sohemy A (2018) Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc 50(8):1570–1578. https://doi.org/10.1249/MSS.0000000000001596
Guest N, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI (2021) International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 18(1):1. https://doi.org/10.1186/s12970-020-00383-4
Gutierrez-Hellin J, Del Coso J (2018) Effects of p-synephrine and caffeine ingestion on substrate oxidation during exercise. Med Sci Sports Exerc 50(9):1899–1906. https://doi.org/10.1249/MSS.0000000000001653
Gutiérrez-Hellín J, Aguilar-Navarro M, Ruiz-Moreno C, Muñoz A, Varillas-Delgado D, Amaro-Gahete FJ, Del Coso J (2023) Effect of caffeine intake on fat oxidation rate during exercise: is there a dose-response effect? Eur J Nutr 62(1):311–319. https://doi.org/10.1007/s00394-022-02988-8
Haddad M, Stylianides G, Djaoui L, Dellal A, Chamari K (2017) Session-RPE method for training load monitoring: validity, ecological usefulness, and influencing factors. Front Neurosci 11:612. https://doi.org/10.3389/fnins.2017.00612
Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4(2):97–110
Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO (1998) Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol 85(5):1823–1832. https://doi.org/10.1152/jappl.1998.85.5.1823
Janse de Jonge XA (2003) Effects of the menstrual cycle on exercise performance. Sports Med 33(11):833–851. https://doi.org/10.2165/00007256-200333110-00004
Jeukendrup AE, Wallis GA (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 26(Suppl 1):S28-37. https://doi.org/10.1055/s-2004-830512
Jodra P, Lago-Rodriguez A, Sanchez-Oliver AJ, Lopez-Samanes A, Perez-Lopez A, Veiga-Herreros P, San Juan AF, Dominguez R (2020) Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J Int Soc Sports Nutr 17(1):2. https://doi.org/10.1186/s12970-019-0332-5
Kalmar JM, Cafarelli E (2004) Caffeine: a valuable tool to study central fatigue in humans. Exerc Sports Sci Rev. 32:143–147. https://doi.org/10.1097/00003677-200410000-00004
Maier T, Kühnel J, Zimmermann B (2022) How did you sleep tonight? The relevance of sleep quality and sleep-wake rhythm for procrastination at work. Front Psychol 12:785154. https://doi.org/10.3389/fpsyg.2021.785154
Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J (2013) Circadian clocks and metabolism. In: Kramer A, Merrow M (eds) Circadian clocks. Handbook of experimental pharmacology, vol 217. Springer, Berlin, Heidelberg, pp 127–155. https://doi.org/10.1007/978-3-642-25950-0_6
Maunder E, Plews DJ, Kilding AE (2018) Contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol 9:599. https://doi.org/10.3389/fphys.2018.00599
Pickel L, Sung HK (2020) Feeding rhythms and the circadian regulation of metabolism. Front Nutr 7:39. https://doi.org/10.3389/fnut.2020.00039
Ramirez-Maldonado M, Jurado-Fasoli L, Del Coso J, J RR, Amaro-Gahete FJ, (2021) Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? J Int Soc Sports Nutr 18 (1):5. doi:https://doi.org/10.1186/s12970-020-00400-6
Robles-Gonzalez L, Aguilar-Navarro M, Lopez-Samanes A, Ruiz-Moreno C, Munoz A, Varillas-Delgado D, Gutierrez-Hellin J, Helge JW, Ruiz JR, Amaro-Gahete FJ, (2022) No diurnal variation is present in maximal fat oxidation during exercise in young healthy women: A cross-over study. Eur J Sport Scihttps://doi.org/10.1080/17461391.2022.2067007
Robles-González L, Gutiérrez-Hellín J, Aguilar-Navarro M, Ruiz-Moreno C, Muñoz A, Del Coso J, Ruiz JR, Amaro-Gahete FJ (2021) Inter-day reliability of resting metabolic rate and maximal fat oxidation during exercise in healthy men using the Ergostik gas analyzer. Nutrients 13(12):4308. https://doi.org/10.3390/nu13124308
Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, Kiens B (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects Am. J Physiol Endocrinol Metab 282(2):E435–E447. https://doi.org/10.1152/ajpendo.00266.2001
Ruíz-Moreno C, Lara B, Brito de Souza D, Gutiérrez-Hellín J, Romero-Moraleda B, Cuéllar-Rayo Á, Del Coso J (2020) Acute caffeine intake increases muscle oxygen saturation during a maximal incremental exercise test. Br J Clin Pharmacol 86(5):861–867. https://doi.org/10.1111/bcp.14189
Ruiz-Moreno C, Gutierrez-Hellin J, Amaro-Gahete FJ, Gonzalez-Garcia J, Giraldez-Costas V, Perez-Garcia V, Del Coso J (2021) Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. Eur J Nutr 60(4):2077–2085. https://doi.org/10.1007/s00394-020-02393-z
Salinero JJ, Lara B, Abian-Vicen J, Gonzalez-Millan C, Areces F, Gallo-Salazar C, Ruiz-Vicente D, Del Coso J (2014) The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr 112(9):1494–1502. https://doi.org/10.1017/S0007114514002189
Smith A, Sutherland D, Christopher G (2005) Effects of repeated doses of caffeine on mood and performance of alert and fatigued volunteers. J Psychopharmacol 19(6):620–626. https://doi.org/10.1177/0269881105056534
Comments (0)