BK channels sustain neuronal Ca2+ oscillations to support hippocampal long-term potentiation and memory formation

Miller JP, Moldenhauer HJ, Keros S, Meredith AL (2021) An emerging spectrum of variants and clinical features in KCNMA1-linked channelopathy. Channels (Austin) 15(1):447–464. https://doi.org/10.1080/19336950.2021.1938852

Article  PubMed  Google Scholar 

Laumonnier F, Roger S, Guerin P, Molinari F, M’Rad R, Cahard D et al (2006) Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatry 163(9):1622–1629. https://doi.org/10.1176/ajp.2006.163.9.1622

Article  PubMed  Google Scholar 

Zhang L, Li X, Zhou R, Xing G (2006) Possible role of potassium channel, big K in etiology of schizophrenia. Med Hypotheses 67(1):41–43. https://doi.org/10.1016/j.mehy.2005.09.055

Article  CAS  PubMed  Google Scholar 

Sausbier U, Sausbier M, Sailer CA, Arntz C, Knaus H-G, Neuhuber W et al (2005) Ca2+-activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol 125(6):725. https://doi.org/10.1007/s00418-005-0124-7

Article  CAS  PubMed  Google Scholar 

Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ et al (2006) Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Compar Neurol 496(3):289–302. https://doi.org/10.1002/cne.20931

Article  CAS  Google Scholar 

Sailer CA, Kaufmann WA, Kogler M, Chen L, Sausbier U, Ottersen OP et al (2006) Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur J Neurosci 24(2):442–454. https://doi.org/10.1111/j.1460-9568.2006.04936.x

Article  PubMed  Google Scholar 

Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S et al (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314(5799):615–620. https://doi.org/10.1126/science.1132915

Article  CAS  PubMed  Google Scholar 

Zhang J, Guan X, Li Q, Meredith AL, Pan HL, Yan J (2018) Glutamate-activated BK channel complexes formed with NMDA receptors. Proc Natl Acad Sci USA 115(38):E9006–E9014. https://doi.org/10.1073/pnas.1802567115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berkefeld H, Fakler B (2013) Ligand-gating by Ca2+ is rate limiting for physiological operation of BK(Ca) channels. J Neurosci 33(17):7358–7367. https://doi.org/10.1523/JNEUROSCI.5443-12.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez GJ, Bonev AD, Nelson MT (2001) Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 281(6):C1769–C1775. https://doi.org/10.1152/ajpcell.2001.281.6.C1769

Article  CAS  PubMed  Google Scholar 

Shah KR, Guan X, Yan J (2021) Structural and functional coupling of calcium-activated BK channels and calcium-permeable channels within nanodomain signaling complexes. Front Physiol 12:796540. https://doi.org/10.3389/fphys.2021.796540

Article  PubMed  Google Scholar 

Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R et al (2001) Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21(24):9585–9597. https://doi.org/10.1523/JNEUROSCI.21-24-09585.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Contet C, Goulding SP, Kuljis DA, Barth AL (2016) BK channels in the central nervous system. Int Rev Neurobiol 128:281–342. https://doi.org/10.1016/bs.irn.2016.04.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol 385:733–759. https://doi.org/10.1113/jphysiol.1987.sp016517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580(Pt.3):859–882. https://doi.org/10.1113/jphysiol.2006.126367

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin W, Sugaya A, Tsuda T, Ohguchi H, Sugaya E (2000) Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res 860(1–2):21–28. https://doi.org/10.1016/s0006-8993(00)01943-0

Article  CAS  PubMed  Google Scholar 

Volk L, Chiu SL, Sharma K, Huganir RL (2015) Glutamate synapses in human cognitive disorders. Annu Rev Neurosci 38:127–149. https://doi.org/10.1146/annurev-neuro-071714-033821

Article  CAS  PubMed  Google Scholar 

Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369(1633):20130288. https://doi.org/10.1098/rstb.2013.0288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freir DB, Herron CE (2003) Inhibition of l-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo. Brain Res 967(1–2):27–36. https://doi.org/10.1016/s0006-8993(02)04190-2

Article  CAS  PubMed  Google Scholar 

Malenka RC (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6(1):53–60. https://doi.org/10.1016/0896-6273(91)90121-f

Article  CAS  PubMed  Google Scholar 

Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100(2):314–329. https://doi.org/10.1016/j.neuron.2018.10.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lisman J, Buzsaki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD (2017) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20(11):1434–1447. https://doi.org/10.1038/nn.4661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JH, Lee HK, Takamiya K, Huganir RL (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23(4):1119–1124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J et al (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22(22):9721–9732

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadif Kasri N, Nakano-Kobayashi A, Malinow R, Li B, Van Aelst L (2009) The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors. Genes Dev 23(11):1289–1302. https://doi.org/10.1101/gad.1783809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadif Kasri N, Nakano-Kobayashi A, Van Aelst L (2011) Rapid synthesis of the X-linked mental retardation protein OPHN1 mediates mGluR-dependent LTD through interaction with the endocytic machinery. Neuron 72(2):300–315. https://doi.org/10.1016/j.neuron.2011.09.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matthews EA, Disterhoft JF (2009) Blocking the BK channel impedes acquisition of trace eyeblink conditioning. Learn Mem 16(2):106–109. https://doi.org/10.1101/lm.1289809

Article  PubMed  PubMed Central  Google Scholar 

Typlt M, Mirkowski M, Azzopardi E, Ruettiger L, Ruth P, Schmid S (2013) Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory. PLoS One 8(11):e81270. https://doi.org/10.1371/journal.pone.0081270

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87(7):1317–1326. https://doi.org/10.1016/s0092-8674(00)81826-7

Article  CAS  PubMed  Google Scholar 

Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H et al (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci USA 101(25):9474–9478. https://doi.org/10.1073/pnas.0401702101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK et al (2015) The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. Learn Mem 22(7):323–335. https://doi.org/10.1101/lm.037820.114

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif