Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15(5):573–585. https://doi.org/10.1093/humupd/dmp014
Di Nisio V, Antonouli S, Damdimopoulou P, Salumets A, Cecconi S (2022) In vivo and in vitro postovulatory aging: when time works against oocyte quality? J Assist Reprod Genet 39(4):905–918. https://doi.org/10.1007/s10815-022-02418-y
Article PubMed PubMed Central Google Scholar
Hu L, Bu Z, Huang G, Sun H, Deng C, Sun Y (2020) Assisted reproductive technology in China: Results generated from data reporting system by CSRM From 2013 to 2016. Front Endocrinol (Lausanne) 11:458. https://doi.org/10.3389/fendo.2020.00458
Beck-Fruchter R, Lavee M, Weiss A, Geslevich Y, Shalev E (2014) Rescue intracytoplasmic sperm injection: a systematic review. Fertil Steril 101(3):690–698. https://doi.org/10.1016/j.fertnstert.2013.12.004
Huang B, Qian K, Li Z, Yue J, Yang W, Zhu G, Zhang H (2015) Neonatal outcomes after early rescue intracytoplasmic sperm injection: an analysis of a 5-year period. Fertil Steril 103(6):1432-1437.e1431. https://doi.org/10.1016/j.fertnstert.2015.02.026
Juan J, Tarin SP-A, Perez-Hoyos S, Cano A (2002) Postovulatory aging of oocytes decreases reproductive fitness and longevityof offspring. Biol Reprod 66(2):495–499. https://doi.org/10.1095/biolreprod66.2.495
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Frohlich T, Arnold GJ, Grummer R, Horsthemke B, Eichenlaub-Ritter U (2016) Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 31(1):133–149. https://doi.org/10.1093/humrep/dev279
Article PubMed CAS Google Scholar
Lin F-H, Zhang W-L, Li H, Tian X-D, Zhang J, Li X, Li C-Y, Tan J-H (2018) Role of autophagy in modulating post-maturation aging of mouse oocytes. Cell Death Dis. https://doi.org/10.1038/s41419-018-0368-5
Article PubMed PubMed Central Google Scholar
Miao Y, Zhou C, Cui Z, Zhang M, ShiYang X, Lu Y, Xiong B (2018) Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J 32(3):1328–1337. https://doi.org/10.1096/fj.201700908R
Article PubMed CAS Google Scholar
Sun GY, Gong S, Kong QQ, Li ZB, Wang J, Xu MT, Luo MJ, Tan JH (2020) Role of AMP-activated protein kinase during postovulatory aging of mouse oocytesdagger. Biol Reprod 103(3):534–547. https://doi.org/10.1093/biolre/ioaa081
Martin JH, Bromfield EG, Aitken RJ, Nixon B (2017) Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 74(3):469–485. https://doi.org/10.1007/s00018-016-2356-1
Article PubMed CAS Google Scholar
Prasad S, Tiwari M, Koch B, Chaube SK (2015) Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci 22(1):36. https://doi.org/10.1186/s12929-015-0143-1
Article PubMed PubMed Central CAS Google Scholar
Jiao Y, Wang Y, Jiang T, Wen K, Cong P, Chen Y, He Z (2022) Quercetin protects porcine oocytes from in vitro aging by reducing oxidative stress and maintaining the mitochondrial functions. Front Cell Dev Biol 10:915898. https://doi.org/10.3389/fcell.2022.915898
Article PubMed PubMed Central Google Scholar
Miao Y, Cui Z, Zhu X, Gao Q, Xiong B (2022) Supplementation of nicotinamide mononucleotide improves the quality of postovulatory aged porcine oocytes. J Mol Cell Biol. https://doi.org/10.1093/jmcb/mjac025
Article PubMed PubMed Central Google Scholar
Esencan E, Kallen A, Zhang M, Seli E (2019) Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biol Reprod 100(5):1147–1157. https://doi.org/10.1093/biolre/ioz034
Article PubMed PubMed Central Google Scholar
Toralova T, Kinterova V, Chmelikova E, Kanka J (2020) The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 77(16):3177–3194. https://doi.org/10.1007/s00018-020-03482-2
Article PubMed CAS Google Scholar
Shi B, Heng J, Zhou JY, Yang Y, Zhang WY, Koziol MJ, Zhao YL, Li P, Liu F, Yang YG (2022) Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res 32(8):715–728. https://doi.org/10.1038/s41422-022-00655-5
Article PubMed PubMed Central CAS Google Scholar
Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY (2019) ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 47(21):11387–11402. https://doi.org/10.1093/nar/gkz863
Article PubMed PubMed Central CAS Google Scholar
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R (2014) Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect Genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0108907
Article PubMed PubMed Central Google Scholar
Ma J, Fukuda Y, Schultz RM (2015) Mobilization of Dormant Cnot7 mRNA promotes deadenylation of maternal transcripts during mouse oocyte maturation1. Biol Reprod. https://doi.org/10.1095/biolreprod.115.130344
Article PubMed PubMed Central Google Scholar
Medvedev S, Yang J, Hecht NB, Schultz RM (2008) CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev Biol 321(1):205–215. https://doi.org/10.1016/j.ydbio.2008.06.016
Article PubMed PubMed Central CAS Google Scholar
Medvedev S, Pan H, Schultz RM (2011) Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, rna stability, and the transcriptome. Biol Reprod 85(3):575–583. https://doi.org/10.1095/biolreprod.111.091710
Article PubMed PubMed Central CAS Google Scholar
Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-Body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes1. Biol Reprod 82(5):1008–1017. https://doi.org/10.1095/biolreprod.109.082057
Article PubMed PubMed Central CAS Google Scholar
Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, Zhu H, Khan A, Khan MZ, Zhang P, Zhao X (2023) Effects of beta-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes. Antioxidants (Basel). https://doi.org/10.3390/antiox12050991
Article PubMed PubMed Central Google Scholar
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S (2022) Cordycepin mitigates spermatogenic and redox related expression in H(2)O(2)-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. Pharm Biol 60(1):404–416. https://doi.org/10.1080/13880209.2022.2033275
Article PubMed PubMed Central CAS Google Scholar
Choi YH, Kim GY, Lee HH (2014) Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Des Devel Ther 8:1941–1953. https://doi.org/10.2147/DDDT.S71957
Article PubMed PubMed Central Google Scholar
Khan MA, Tania M (2020) Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr Med Chem 27(6):983–996. https://doi.org/10.2174/0929867325666181001105749
Article PubMed CAS Google Scholar
Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C (2019) Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun 10(1):2538. https://doi.org/10.1038/s41467-019-10386-8
Article PubMed PubMed Central CAS Google Scholar
Leu SF, Poon SL, Pao HY, Huang BM (2011) The in vivo and in vitro stimulatory effects of cordycepin on mouse leydig cell steroidogenesis. Biosci Biotechnol Biochem 75(4):723–731. https://doi.org/10.1271/bbb.100853
Article PubMed CAS Google Scholar
Chen Y-C, Chen Y-H, Pan B-S, Chang M-M, Huang B-M (2017) Functional study of Cordyceps sinensis and cordycepin in male reproduction: a review. J Food Drug Analy 25(1):197–205. https://doi.org/10.1016/j.jfda.2016.10.020
Liu Y, Zhao H, Shao F, Zhang Y, Nie H, Zhang J, Li C, Hou Z, Chen ZJ, Wang J, Zhou B, Wu K, Lu F (2023) Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol 30(2):200–215. https://doi.org/10.1038/s41594-022-00908-2
Article PubMed PubMed Central CAS Google Scholar
Janicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH (2012) ePAT: a simple metho
Comments (0)