Cordycepin delays postovulatory aging of oocytes through inhibition of maternal mRNAs degradation via DCP1A polyadenylation suppression

Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15(5):573–585. https://doi.org/10.1093/humupd/dmp014

Article  PubMed  Google Scholar 

Di Nisio V, Antonouli S, Damdimopoulou P, Salumets A, Cecconi S (2022) In vivo and in vitro postovulatory aging: when time works against oocyte quality? J Assist Reprod Genet 39(4):905–918. https://doi.org/10.1007/s10815-022-02418-y

Article  PubMed  PubMed Central  Google Scholar 

Hu L, Bu Z, Huang G, Sun H, Deng C, Sun Y (2020) Assisted reproductive technology in China: Results generated from data reporting system by CSRM From 2013 to 2016. Front Endocrinol (Lausanne) 11:458. https://doi.org/10.3389/fendo.2020.00458

Article  PubMed  Google Scholar 

Beck-Fruchter R, Lavee M, Weiss A, Geslevich Y, Shalev E (2014) Rescue intracytoplasmic sperm injection: a systematic review. Fertil Steril 101(3):690–698. https://doi.org/10.1016/j.fertnstert.2013.12.004

Article  PubMed  Google Scholar 

Huang B, Qian K, Li Z, Yue J, Yang W, Zhu G, Zhang H (2015) Neonatal outcomes after early rescue intracytoplasmic sperm injection: an analysis of a 5-year period. Fertil Steril 103(6):1432-1437.e1431. https://doi.org/10.1016/j.fertnstert.2015.02.026

Article  PubMed  Google Scholar 

Juan J, Tarin SP-A, Perez-Hoyos S, Cano A (2002) Postovulatory aging of oocytes decreases reproductive fitness and longevityof offspring. Biol Reprod 66(2):495–499. https://doi.org/10.1095/biolreprod66.2.495

Article  Google Scholar 

Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Frohlich T, Arnold GJ, Grummer R, Horsthemke B, Eichenlaub-Ritter U (2016) Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 31(1):133–149. https://doi.org/10.1093/humrep/dev279

Article  PubMed  CAS  Google Scholar 

Lin F-H, Zhang W-L, Li H, Tian X-D, Zhang J, Li X, Li C-Y, Tan J-H (2018) Role of autophagy in modulating post-maturation aging of mouse oocytes. Cell Death Dis. https://doi.org/10.1038/s41419-018-0368-5

Article  PubMed  PubMed Central  Google Scholar 

Miao Y, Zhou C, Cui Z, Zhang M, ShiYang X, Lu Y, Xiong B (2018) Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J 32(3):1328–1337. https://doi.org/10.1096/fj.201700908R

Article  PubMed  CAS  Google Scholar 

Sun GY, Gong S, Kong QQ, Li ZB, Wang J, Xu MT, Luo MJ, Tan JH (2020) Role of AMP-activated protein kinase during postovulatory aging of mouse oocytesdagger. Biol Reprod 103(3):534–547. https://doi.org/10.1093/biolre/ioaa081

Article  PubMed  Google Scholar 

Martin JH, Bromfield EG, Aitken RJ, Nixon B (2017) Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 74(3):469–485. https://doi.org/10.1007/s00018-016-2356-1

Article  PubMed  CAS  Google Scholar 

Prasad S, Tiwari M, Koch B, Chaube SK (2015) Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci 22(1):36. https://doi.org/10.1186/s12929-015-0143-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jiao Y, Wang Y, Jiang T, Wen K, Cong P, Chen Y, He Z (2022) Quercetin protects porcine oocytes from in vitro aging by reducing oxidative stress and maintaining the mitochondrial functions. Front Cell Dev Biol 10:915898. https://doi.org/10.3389/fcell.2022.915898

Article  PubMed  PubMed Central  Google Scholar 

Miao Y, Cui Z, Zhu X, Gao Q, Xiong B (2022) Supplementation of nicotinamide mononucleotide improves the quality of postovulatory aged porcine oocytes. J Mol Cell Biol. https://doi.org/10.1093/jmcb/mjac025

Article  PubMed  PubMed Central  Google Scholar 

Esencan E, Kallen A, Zhang M, Seli E (2019) Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biol Reprod 100(5):1147–1157. https://doi.org/10.1093/biolre/ioz034

Article  PubMed  PubMed Central  Google Scholar 

Toralova T, Kinterova V, Chmelikova E, Kanka J (2020) The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 77(16):3177–3194. https://doi.org/10.1007/s00018-020-03482-2

Article  PubMed  CAS  Google Scholar 

Shi B, Heng J, Zhou JY, Yang Y, Zhang WY, Koziol MJ, Zhao YL, Li P, Liu F, Yang YG (2022) Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res 32(8):715–728. https://doi.org/10.1038/s41422-022-00655-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY (2019) ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 47(21):11387–11402. https://doi.org/10.1093/nar/gkz863

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R (2014) Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect Genes. PLoS ONE. https://doi.org/10.1371/journal.pone.0108907

Article  PubMed  PubMed Central  Google Scholar 

Ma J, Fukuda Y, Schultz RM (2015) Mobilization of Dormant Cnot7 mRNA promotes deadenylation of maternal transcripts during mouse oocyte maturation1. Biol Reprod. https://doi.org/10.1095/biolreprod.115.130344

Article  PubMed  PubMed Central  Google Scholar 

Medvedev S, Yang J, Hecht NB, Schultz RM (2008) CDC2A (CDK1)-mediated phosphorylation of MSY2 triggers maternal mRNA degradation during mouse oocyte maturation. Dev Biol 321(1):205–215. https://doi.org/10.1016/j.ydbio.2008.06.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Medvedev S, Pan H, Schultz RM (2011) Absence of MSY2 in mouse oocytes perturbs oocyte growth and maturation, rna stability, and the transcriptome. Biol Reprod 85(3):575–583. https://doi.org/10.1095/biolreprod.111.091710

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flemr M, Ma J, Schultz RM, Svoboda P (2010) P-Body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes1. Biol Reprod 82(5):1008–1017. https://doi.org/10.1095/biolreprod.109.082057

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, Zhu H, Khan A, Khan MZ, Zhang P, Zhao X (2023) Effects of beta-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes. Antioxidants (Basel). https://doi.org/10.3390/antiox12050991

Article  PubMed  PubMed Central  Google Scholar 

Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S (2022) Cordycepin mitigates spermatogenic and redox related expression in H(2)O(2)-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. Pharm Biol 60(1):404–416. https://doi.org/10.1080/13880209.2022.2033275

Article  PubMed  PubMed Central  CAS  Google Scholar 

Choi YH, Kim GY, Lee HH (2014) Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Des Devel Ther 8:1941–1953. https://doi.org/10.2147/DDDT.S71957

Article  PubMed  PubMed Central  Google Scholar 

Khan MA, Tania M (2020) Cordycepin in anticancer research: molecular mechanism of therapeutic effects. Curr Med Chem 27(6):983–996. https://doi.org/10.2174/0929867325666181001105749

Article  PubMed  CAS  Google Scholar 

Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, Wang H, Wang Y, Long L, Tan X, Liu D, Jin T, Wang Y, Wang Y, Liao F, Zhang C, Chen L, Gan Y, Liu Y, Yang F, Huang C, Miao H, Chen J, Cheng T, Fu X, Shi C (2019) Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun 10(1):2538. https://doi.org/10.1038/s41467-019-10386-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leu SF, Poon SL, Pao HY, Huang BM (2011) The in vivo and in vitro stimulatory effects of cordycepin on mouse leydig cell steroidogenesis. Biosci Biotechnol Biochem 75(4):723–731. https://doi.org/10.1271/bbb.100853

Article  PubMed  CAS  Google Scholar 

Chen Y-C, Chen Y-H, Pan B-S, Chang M-M, Huang B-M (2017) Functional study of Cordyceps sinensis and cordycepin in male reproduction: a review. J Food Drug Analy 25(1):197–205. https://doi.org/10.1016/j.jfda.2016.10.020

Article  CAS  Google Scholar 

Liu Y, Zhao H, Shao F, Zhang Y, Nie H, Zhang J, Li C, Hou Z, Chen ZJ, Wang J, Zhou B, Wu K, Lu F (2023) Remodeling of maternal mRNA through poly(A) tail orchestrates human oocyte-to-embryo transition. Nat Struct Mol Biol 30(2):200–215. https://doi.org/10.1038/s41594-022-00908-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Janicke A, Vancuylenberg J, Boag PR, Traven A, Beilharz TH (2012) ePAT: a simple metho

Comments (0)

No login
gif