Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487. https://doi.org/10.1038/nrm2718
Article CAS PubMed PubMed Central Google Scholar
Ricke RM, Van Ree JH, Van Deursen JM (2008) Whole chromosome instability and cancer: a complex relationship. Trends Genet 24:457–466. https://doi.org/10.1016/j.tig.2008.07.002
Article CAS PubMed PubMed Central Google Scholar
Schvartzman JM, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10:102–115. https://doi.org/10.1038/nrc2781
Article CAS PubMed PubMed Central Google Scholar
Daniel P, Cahill CL, Jian Yu, Riggins GJ, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303. https://doi.org/10.1038/32688
Masuda A, Takahashi T (2002) Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21:6884–6897. https://doi.org/10.1038/sj.onc.1205566
Article CAS PubMed Google Scholar
Nezi L, Musacchio A (2009) Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 21:785–795. https://doi.org/10.1016/j.ceb.2009.09.007
Article CAS PubMed Google Scholar
Shepperd LA, Meadows JC, Sochaj AM et al (2012) Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 22:891–899. https://doi.org/10.1016/j.cub.2012.03.051
Article CAS PubMed PubMed Central Google Scholar
Lara-Gonzalez P, Pines J, Desai A (2021) Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 117:86–98. https://doi.org/10.1016/j.semcdb.2021.06.009
Article CAS PubMed PubMed Central Google Scholar
Liu ST, Zhang H (2016) The mitotic checkpoint complex (MCC): looking back and forth after 15 years AIMS. Mol Sci 3:597–634. https://doi.org/10.3934/molsci.2016.4.597
Zhang G, Kruse T, Lopez-Mendez B et al (2017) Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling. Nat Commun 8:15822. https://doi.org/10.1038/ncomms15822
Article CAS PubMed PubMed Central Google Scholar
Piano V, Alex A, Stege P et al (2021) CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science 371:67–71. https://doi.org/10.1126/science.abc1152
Article CAS PubMed Google Scholar
Lischetti T, Nilsson J (2015) Regulation of mitotic progression by the spindle assembly checkpoint Mol. Cell Oncol 2:e970484. https://doi.org/10.4161/23723548.2014.970484
Craske B, Welburn JPI (2020) Leaving no-one behind: how CENP-E facilitates chromosome alignment. Essays Biochem 64:313–324. https://doi.org/10.1042/EBC20190073
Article CAS PubMed PubMed Central Google Scholar
Schaar BT, Chan GKT, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. JCB 139:1373–1382
Article CAS PubMed PubMed Central Google Scholar
Yen TJ, Li G, Schaar BT et al (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539. https://doi.org/10.1038/359536a0
Article CAS PubMed Google Scholar
Brown KD, Coulson RM, Yen TJ et al (1994) Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol 125:1303–1312. https://doi.org/10.1083/jcb.125.6.1303
Article CAS PubMed Google Scholar
Magidson V, Paul R, Yang N et al (2015) Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol 17:1134–1144. https://doi.org/10.1038/ncb3223
Article CAS PubMed PubMed Central Google Scholar
Wu M, Chang Y, Hu H et al (2019) LUBAC controls chromosome alignment by targeting CENP-E to attached kinetochores. Nat Commun 10:273. https://doi.org/10.1038/s41467-018-08043-7
Article CAS PubMed PubMed Central Google Scholar
Ciossani G, Overlack K, Petrovic A et al (2018) The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J Biol Chem 293:10084–10101. https://doi.org/10.1074/jbc.RA118.003154
Article CAS PubMed PubMed Central Google Scholar
Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63. https://doi.org/10.1083/jcb.143.1.49
Article CAS PubMed PubMed Central Google Scholar
Grabsch H, Takeno S, Parsons WJ et al (2003) Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer–association with tumour cell proliferation. J Pathol 200:16–22. https://doi.org/10.1002/path.1324
Article CAS PubMed Google Scholar
Yamamoto Y, Matsuyama H, Chochi Y et al (2007) Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet 174:42–47. https://doi.org/10.1016/j.cancergencyto.2006.11.012
Article CAS PubMed Google Scholar
Kops GJ, Foltz DR, Cleveland DW (2004) Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci U S A 101:8699–8704. https://doi.org/10.1073/pnas.0401142101
Article CAS PubMed PubMed Central Google Scholar
Lampson MA, Renduchitala K, Khodjakov A et al (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237. https://doi.org/10.1038/ncb1102
Article CAS PubMed Google Scholar
Elowe S (2011) Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 31:3085–3093. https://doi.org/10.1128/MCB.05326-11
Article CAS PubMed PubMed Central Google Scholar
Johnson VL, Scott MI, Holt SV et al (2004) Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117:1577–1589. https://doi.org/10.1242/jcs.01006
Article CAS PubMed Google Scholar
Elowe S, Hummer S, Uldschmid A et al (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219. https://doi.org/10.1101/gad.436007
Article CAS PubMed PubMed Central Google Scholar
Suijkerbuijk SJ, Vleugel M, Teixeira A et al (2012) Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev Cell 23:745–755. https://doi.org/10.1016/j.devcel.2012.09.005
Article CAS PubMed Google Scholar
Kaisari S, Miniowitz-Shemtov S, Sitry-Shevah D et al (2022) Role of ubiquitin-protein ligase UBR5 in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2121478119
Article PubMed PubMed Central Google Scholar
Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
Article CAS PubMed Google Scholar
Lee EK, Diehl JA (2014) SCFs in the new millennium. Oncogene 33:2011–2018. https://doi.org/10.1038/onc.2013.144
Article CAS PubMed Google Scholar
Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14:369–381. https://doi.org/10.1038/nrm3582
Article CAS PubMed Google Scholar
Stephenson SEM, Costain G, Blok LER et al (2022) Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet 109:601–617
Comments (0)