Gines P, Krag A, Abraldes JG, Sola E, Fabrellas N, Kamath PS (2021) Liver cirrhosis. Lancet 398:1359–1376. https://doi.org/10.1016/S0140-6736(21)01374-X
Moon AM, Singal AG, Tapper EB (2020) Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin Gastroenterol Hepatol 18:2650–2666. https://doi.org/10.1016/j.cgh.2019.07.060
Kisseleva TD (2021) Brenner Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 18:151–166. https://doi.org/10.1038/s41575-020-00372-7
Trivedi P, Wang S, Friedman SL (2021) The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab 33:242–257. https://doi.org/10.1016/j.cmet.2020.10.026
Article CAS PubMed Google Scholar
Parola MM, Pinzani. (2019) Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 65:37–55. https://doi.org/10.1016/j.mam.2018.09.002
Article CAS PubMed Google Scholar
Sutti SE, Albano. (2020) Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol 17:81–92. https://doi.org/10.1038/s41575-019-0210-2
Article CAS PubMed Google Scholar
Faggioli F, Palagano E, Di Tommaso L, Donadon M, Marrella V, Recordati C, Mantero S, Villa A, Vezzoni P, Cassani B (2018) B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 67:1970–1985. https://doi.org/10.1002/hep.29636
Article CAS PubMed Google Scholar
Barrow F, Khan S, Fredrickson G, Wang H, Dietsche K, Parthiban P, Robert S, Kaiser T, Winer S, Herman A, Adeyi O, Mouzaki M, Khoruts A, Hogquist KA, Staley C, Winer DA, Revelo XS (2021) Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 74:704–722. https://doi.org/10.1002/hep.31755
Article CAS PubMed Google Scholar
Zhang F, Jiang WW, Li X, Qiu XY, Wu Z, Chi YJ, Cong X, Liu YL (2016) Role of intrahepatic B cells in non-alcoholic fatty liver disease by secreting pro-inflammatory cytokines and regulating intrahepatic T cells. J Dig Dis 17:464–474. https://doi.org/10.1111/1751-2980.12362
Article CAS PubMed Google Scholar
Thapa M, Chinnadurai R, Velazquez VM, Tedesco D, Elrod E, Han JH, Sharma P, Ibegbu C, Gewirtz A, Anania F, Pulendran B, Suthar MS, Grakoui A (2015) Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 61:2067–2079. https://doi.org/10.1002/hep.27761
Article CAS PubMed Google Scholar
Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, Shlomchik MJ, Koteliansky V, Hochman PS, Ibraghimov A (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115:3072–3082. https://doi.org/10.1172/JCI24798
Article CAS PubMed PubMed Central Google Scholar
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z (2021) The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 12:729143. https://doi.org/10.3389/fimmu.2021.729143
Article CAS PubMed PubMed Central Google Scholar
Britton C, Poznansky MC, Reeves P (2021) Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 35:e21260. https://doi.org/10.1096/fj.202001273R
Article CAS PubMed Google Scholar
Chen Z, Liu S, He C, Sun J, Wang L, Chen H, Zhang F (2021) CXCL12-CXCR4-mediated chemotaxis supports accumulation of mucosal-associated invariant T cells into the liver of patients with PBC. Front Immunol 12:578548. https://doi.org/10.3389/fimmu.2021.578548
Article CAS PubMed PubMed Central Google Scholar
Chalin A, Lefevre B, Devisme C, Barget N, Amiot L, Samson M (2019) Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine 117:72–78. https://doi.org/10.1016/j.cyto.2019.02.006
Article CAS PubMed Google Scholar
Chow LN, Schreiner P, Ng BY, Lo B, Hughes MR, Scott RW, Gusti V, Lecour S, Simonson E, Manisali I, Barta I, McNagny KM, Crawford J, Webb M, Underhill TM (2016) Impact of a CXCL12/CXCR4 antagonist in bleomycin (BLM) induced pulmonary fibrosis and carbon tetrachloride (CCl4) induced hepatic fibrosis in mice. PLoS ONE 11:e0151765. https://doi.org/10.1371/journal.pone.0151765
Article CAS PubMed PubMed Central Google Scholar
Saiman Y, Jiao J, Fiel MI, Friedman SL, Aloman C, Bansal MB (2015) Inhibition of the CXCL12/CXCR4 chemokine axis with AMD3100, a CXCR4 small molecule inhibitor, worsens murine hepatic injury. Hepatol Res 45:794–803. https://doi.org/10.1111/hepr.12411
Article CAS PubMed Google Scholar
Tsuchiya A, Imai M, Kamimura H, Takamura M, Yamagiwa S, Sugiyama T, Nomoto M, Heike T, Nagasawa T, Nakahata T, Aoyagi Y (2012) Increased susceptibility to severe chronic liver damage in CXCR4 conditional knock-out mice. Dig Dis Sci 57:2892–2900. https://doi.org/10.1007/s10620-012-2239-8
Article CAS PubMed Google Scholar
Terada R, Yamamoto K, Hakoda T, Shimada N, Okano N, Baba N, Ninomiya Y, Gershwin ME, Shiratori Y (2003) Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Invest 83:665–672. https://doi.org/10.1097/01.lab.0000067498.89585.06
Article CAS PubMed Google Scholar
Wald O, Pappo O, Safadi R, Dagan-Berger M, Beider K, Wald H, Franitza S, Weiss I, Avniel S, Boaz P, Hanna J, Zamir G, Eid A, Mandelboim O, Spengler U, Galun E, Peled A (2004) Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur J Immunol 34:1164–1174. https://doi.org/10.1002/eji.200324441
Article CAS PubMed Google Scholar
Lei Y, Liu Z, Han Q, Kang W, Zhang L, Lou S (2010) G-CSF enhanced SDF-1 gradient between bone marrow and liver associated with mobilization of peripheral blood CD34+ cells in rats with acute liver failure. Dig Dis Sci 55:285–291. https://doi.org/10.1007/s10620-009-0757-9
Article CAS PubMed Google Scholar
Liu Y, Yang X, Jing Y, Zhang S, Zong C, Jiang J, Sun K, Li R, Gao L, Zhao X, Wu D, Shi Y, Han Z, Wei L (2015) Contribution and mobilization of mesenchymal stem cells in a mouse model of carbon tetrachloride-induced liver fibrosis. Sci Rep 5:17762. https://doi.org/10.1038/srep17762
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Tai Y, Zhao C, Ma X, Tang S, Tong H, Tang C, Gao J (2021) Inhibition of cyclooxygenase-2 enhanced intestinal epithelial homeostasis via suppressing beta-catenin signalling pathway in experimental liver fibrosis. J Cell Mol Med 25:7993–8005. https://doi.org/10.1111/jcmm.16730
Article CAS PubMed PubMed Central Google Scholar
Tang S, Huang Z, Jiang J, Gao J, Zhao C, Tai Y, Ma X, Zhang L, Ye Y, Gan C, Su W, Jia X, Liu R, Wu H, Tang C (2021) Celecoxib ameliorates liver cirrhosis via reducing inflammation and oxidative stress along spleen-liver axis in rats. Life Sci 272:119203. https://doi.org/10.1016/j.lfs.2021.119203
Article CAS PubMed Google Scholar
Tai Y, Zhao C, Zhang L, Tang S, Jia X, Tong H, Liu R, Tang C, Gao J (2021) Celecoxib reduces hepatic vascular resistance in portal hypertension by amelioration of endothelial oxidative stress. J Cell Mol Med 25:10389–10402. https://doi.org/10.1111/jcmm.16968
Article CAS PubMed PubMed Central Google Scholar
Gao JH, Wen SL, Tong H, Wang CH, Yang WJ, Tang SH, Yan ZP, Tai Y, Ye C, Liu R, Huang ZY, Tang YM, Yang JH, Tang CW (2016) Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats. Am J Physiol Gastrointest Liver Physiol 310:G962–G972. https://doi.org/10.1152/ajpgi.00428.2015
Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW (2016) Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 19:501–511. https://doi.org/10.1007/s10456-016-9522-9
Article CAS PubMed PubMed Central Google Scholar
Al-Rashed F, Calay D, Lang M, Thornton CC, Bauer A, Kiprianos A, Haskard DO, Seneviratne A, Boyle JJ, Schonthal AH, Wheeler-Jones CP, Mason JC (2018) Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling. Sci Rep 8:6271. https://doi.org/10.1038/s41598-018-24548-z
Article CAS PubMed PubMed Central Google Scholar
Xu XT, Hu WT, Zhou JY, Tu Y (2017) Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP. Am J Transl Res 9:1088–1100
CAS PubMed PubMed Central Google Scholar
Tamura D, Saito T, Murata K, Kawashima M, Asano R (2015) Celecoxib exerts antitumor effects in canine mammary tumor cells via COX2independent mechanisms. Int J Oncol 46:1393–1404. https://doi.org/10.3892/ijo.2015.2820
Article CAS PubMed Google Scholar
Gallouet AS, Travert M, Bresson-Bepoldin L, Guilloton F, Pangault C
Comments (0)