M. Li, L. Dal Maso, S. Vaccarella, Global trends in thyroid cancer incidence and the impact of overdiagnosis. Lancet Diabetes Endocrinol. 8(6), 468–470 (2020). https://doi.org/10.1016/S2213-8587(20)30115-7
H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317(13), 1338–1348 (2017). https://doi.org/10.1001/jama.2017.2719
Article PubMed PubMed Central Google Scholar
C.D. Seib, J.A. Sosa, Evolving understanding of the epidemiology of thyroid cancer. Endocrinol. Metab. Clin. N. Am. 48(1), 23–35 (2019). https://doi.org/10.1016/j.ecl.2018.10.002
M. Schlumberger, S. Leboulleux, Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 17(3), 176–188 (2021). https://doi.org/10.1038/s41574-020-00448-z
Article CAS PubMed Google Scholar
J. Jonklaas, N.J. Sarlis, D. Litofsky et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 16(12), 1229–1242 (2006). https://doi.org/10.1089/thy.2006.16.1229
M. Shoup, A. Stojadinovic, A. Nissan et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J. Am. Coll. Surg. 197(2), 191–197 (2003). https://doi.org/10.1016/S1072-7515(03)00332-6
C. Durante, N. Haddy, E. Baudin et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91(8), 2892–2899 (2006). https://doi.org/10.1210/jc.2005-2838
Article CAS PubMed Google Scholar
M.S. Brose, J.W.A. Smit, C.C. Lin et al. Multikinase inhibitors for the treatment of asymptomatic radioactive iodine-refractory differentiated thyroid cancer: global noninterventional study (RIFTOS MKI). Thyroid 32(9), 1059–1068 (2022). https://doi.org/10.1089/thy.2022.0061
Article CAS PubMed Google Scholar
M. Savina, S. Gourgou, A. Italiano et al. Meta-analyses evaluating surrogate endpoints for overall survival in cancer randomized trials: a critical review. Crit. Rev. Oncol. Hematol. 123, 21–41 (2018). https://doi.org/10.1016/j.critrevonc.2017.11.014
F. Fiteni, V. Westeel, X. Pivot, C. Borg, D. Vernerey, F. Bonnetain, Endpoints in cancer clinical trials. J. Visc. Surg. 151(1), 17–22 (2014). https://doi.org/10.1016/j.jviscsurg.2013.10.001
Article CAS PubMed Google Scholar
M. Gion, J.M. Pérez-García, A. Llombart-Cussac, M. Sampayo-Cordero, J. Cortés, A. Malfettone, Surrogate endpoints for early-stage breast cancer: a review of the state of the art, controversies, and future prospects. Ther. Adv. Med Oncol. 13, 17588359211059587 (2021). https://doi.org/10.1177/17588359211059587
Article PubMed PubMed Central Google Scholar
M. Buyse, G. Molenberghs, Criteria for the validation of surrogate endpoints in randomized experiments. Biometrics 54(3), 1014–1029 (1998)
Article CAS PubMed Google Scholar
M. Buyse, G. Molenberghs, T. Burzykowski, D. Renard, H. Geys, The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1(1), 49–67 (2000). https://doi.org/10.1093/biostatistics/1.1.49
Article CAS PubMed Google Scholar
W. Xie, S. Halabi, J.F. Tierney et al. A systematic review and recommendation for reporting of surrogate endpoint evaluation using meta-analyses. JNCI Cancer Spectr. 3(1), pkz002 (2019). https://doi.org/10.1093/jncics/pkz002
Article PubMed PubMed Central Google Scholar
FDA: Table of surrogate endpoints that were the basis of drug approval licensure. https://www.fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure. Accessed 15 June 2022
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman; PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535 (2009). https://doi.org/10.1136/bmj.b2535
Article PubMed PubMed Central Google Scholar
J.P. Higgins, D.G. Altman, P.C. Gøtzsche et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928 (2011). https://doi.org/10.1136/bmj.d5928
Article PubMed PubMed Central Google Scholar
S. Leboulleux, L. Bastholt, T. Krause et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 13(9), 897–905 (2012). https://doi.org/10.1016/S1470-2045(12)70335-2
Article CAS PubMed Google Scholar
M.S. Brose, C.M. Nutting, B. Jarzab et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940), 319–328 (2014). https://doi.org/10.1016/S0140-6736(14)60421-9
Article CAS PubMed PubMed Central Google Scholar
M. Schlumberger, M. Tahara, L.J. Wirth et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372(7), 621–630 (2015). https://doi.org/10.1056/NEJMoa1406470
Article CAS PubMed Google Scholar
Chi Y, Gao M, Zhang Y, et al. LBA88 Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase II trial. Ann Oncol. 31 (2020). https://doi.org/10.1016/j.annonc.2020.08.2332
Y. Lin, S. Qin, Z. Li et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial. JAMA Oncol. 8(2), 242–250 (2022). https://doi.org/10.1001/jamaoncol.2021.6268
M.S. Brose, B. Robinson, S.I. Sherman et al. Cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer who have progressed after prior VEGFR-targeted therapy: results from the phase 3 COSMIC-311 trial. J. Clin. Oncol. 39, 6001–6001 (2021). https://doi.org/10.1200/JCO.2021.39.15_suppl.6001
Y. Chi, M. Gao, Y. Zhang et al. Anlotinib in radioiodine-refractory differentiated thyroid carcinoma: a subanalysis based on ALTER01032 study for patients with poor baseline characteristics. J. Clin. Oncol. 39, 6022–6022 (2021). https://doi.org/10.1200/JCO.2021.39.15_suppl.6022
J.C. Del Paggio, J.S. Berry, W.M. Hopman et al. Evolution of the randomized clinical trial in the era of precision oncology. JAMA Oncol. 7(5), 728–734 (2021). https://doi.org/10.1001/jamaoncol.2021.0379
P.A. Tang, S.M. Bentzen, E.X. Chen, L.L. Siu, Surrogate end points for median overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J. Clin. Oncol. 25(29), 4562–4568 (2007). https://doi.org/10.1200/JCO.2006.08.1935
N.R. Foster, Y. Qi, Q. Shi et al. Tumor response and progression-free survival as potential surrogate endpoints for overall survival in extensive stage small-cell lung cancer: findings on the basis of North Central Cancer Treatment Group trials. Cancer. 117(6), 1262–1271 (2011). https://doi.org/10.1002/cncr.25526
A. Mauguen, J.P. Pignon, S. Burdett et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: a re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 14(7), 619–626 (2013). https://doi.org/10.1016/S1470-2045(13)70158-X
Article PubMed PubMed Central Google Scholar
I.F. Tannock, G.R. Pond, C.M. Booth, Biased evaluation in cancer drug trials-how use of progression-free survival as the primary end point can mislead. JAMA Oncol. 8(5), 679–680 (2022). https://doi.org/10.1001/jamaoncol.2021.8206
M. Merino, Y. Kasamon, M. Theoret, R. Pazdur, P. Kluetz, N. Gormley, Irreconcilable differences: the divorce between response rates, progression-free survival, and overall survival. J. Clin. Oncol. 41(15), 2706–2712 (2023). https://doi.org/10.1200/JCO.23.00225
J. Ahn, E. Song, W.G. Kim et al. Long-term clinical outcomes of papillary thyroid carcinoma patients with biochemical incomplete response. Endocrine 67(3), 623–629 (2020). https://doi.org/10.1007/s12020-019-02142-1
Article CAS PubMed Google Scholar
B. Barres, A. Kelly, F. Kwiatkowski et al. Stimulated thyroglobulin and thyroglobulin reduction index predict excellent response in differentiated thyroid cancers. J. Clin. Endocrinol. Metab. 104(8), 3462–3472 (2019). https://doi.org/10.1210/jc.2018-02680
Y. Wang, J. Wu, L. Jiang, X. Zhang, B. Liu, Prognostic value of post-ablation stimulated thyroglobulin in differentiated thyroid cancer patients with biochemical incomplete response: a bi-center observational study. Endocrine 76(1), 109–115 (2022). https://doi.org/10.1007/s12020-021-02976-8
Comments (0)