R.J. Perry, G.I. Shulman, Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 295, 14379–14390 (2020). https://doi.org/10.1074/jbc.REV120.008387
Article CAS PubMed Central PubMed Google Scholar
M. Packer, S.D. Anker, J. Butler, G. Filippatos, S.J. Pocock et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020). https://doi.org/10.1056/NEJMoa2022190
Article CAS PubMed Google Scholar
H.J.L. Heerspink, B.V. Stefansson, R. Correa-Rotter, G.M. Chertow, T. Greene et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020). https://doi.org/10.1056/NEJMoa2024816
Article CAS PubMed Google Scholar
R.C. Baxter, IGF binding proteins in cancer: mechanistic and clinical insights. Nat. Rev. Cancer. 14, 329–341 (2014). https://doi.org/10.1038/nrc3720
Article CAS PubMed Google Scholar
S. Yakar, J.L. Liu, B. Stannard, A. Butler, D. Accili et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA. 96, 7324–7329 (1999). https://doi.org/10.1073/pnas.96.13.7324
Article CAS PubMed Central PubMed Google Scholar
S. Miyamoto, M. Nakamura, K. Yano, G. Ishii, T. Hasebe et al. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci. 98, 685–691 (2007). https://doi.org/10.1111/j.1349-7006.2007.00448.x
Article CAS PubMed Google Scholar
E. Foulstone, S. Prince, O. Zaccheo, J.L. Burns, J. Harper et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J. Pathol. 205, 145–153 (2005). https://doi.org/10.1002/path.1712
Article CAS PubMed Google Scholar
S.M. Firth, R.C. Baxter, Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002). https://doi.org/10.1210/er.2001-0033
Article CAS PubMed Google Scholar
G. Sesti, A. Sciacqua, M. Cardellini, M.A. Marini, R. Maio et al. Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 28, 120–125 (2005). https://doi.org/10.2337/diacare.28.1.120
Article CAS PubMed Google Scholar
M.S. Lewitt, A. Hilding, K. Brismar, S. Efendic, C.G. Ostenson et al. IGF-binding protein 1 and abdominal obesity in the development of type 2 diabetes in women. Eur. J. Endocrinol. 163, 233–242 (2010). https://doi.org/10.1530/EJE-10-0301
Article CAS PubMed Central PubMed Google Scholar
M. Wallander, K. Brismar, J. Ohrvik, L. Ryden, A. Norhammar, Insulin-like growth factor I: a predictor of long-term glucose abnormalities in patients with acute myocardial infarction. Diabetologia 49, 2247–2255 (2006). https://doi.org/10.1007/s00125-006-0386-1
Article CAS PubMed Google Scholar
M.S. Sandhu, A.H. Heald, J.M. Gibson, J.K. Cruickshank, D.B. Dunger et al. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359, 1740–1745 (2002). https://doi.org/10.1016/S0140-6736(02)08655-5
Article CAS PubMed Google Scholar
U. Petersson, C.J. Ostgren, L. Brudin, K. Brismar, P.M. Nilsson, Low levels of insulin-like growth-factor-binding protein-1 (IGFBP-1) are prospectively associated with the incidence of type 2 diabetes and impaired glucose tolerance (IGT): the Soderakra Cardiovascular Risk Factor Study. Diabetes Metab 35, 198–205 (2009). https://doi.org/10.1016/j.diabet.2008.11.003
Article CAS PubMed Google Scholar
M.S. Lewitt, A. Hilding, C.G. Ostenson, S. Efendic, K. Brismar et al. Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 51, 1135–1145 (2008). https://doi.org/10.1007/s00125-008-1016-x
Article CAS PubMed Google Scholar
C. American Diabetes Association Professional Practice, 2, Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45, S17–S38 (2022). https://doi.org/10.2337/dc22-S002
J.C. Levy, D.R. Matthews, M.P. Hermans, Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21, 2191–2192 (1998). https://doi.org/10.2337/diacare.21.12.2191
Article CAS PubMed Google Scholar
L. Xu, M. Wu, S. Chen, Y. Yang, Y. Wang et al. Triglyceride-glucose index associates with incident heart failure: a cohort study. Diabetes Metab. 48, 101365 (2022). https://doi.org/10.1016/j.diabet.2022.101365
Article CAS PubMed Google Scholar
S. Srinivasan, P. Singh, V. Kulothungan, T. Sharma, R. Raman, Relationship between triglyceride glucose index, retinopathy and nephropathy in Type 2 diabetes. Endocrinol. Diabetes Metab. 4, e00151 (2021). https://doi.org/10.1002/edm2.151
Article CAS PubMed Google Scholar
Z. Qin, J. Zhao, J. Geng, K. Chang, R. Liao et al. Higher triglyceride-glucose index is associated with increased likelihood of kidney stones. Front. Endocrinol. (Lausanne). 12, 774567 (2021). https://doi.org/10.3389/fendo.2021.774567
Article PubMed Central PubMed Google Scholar
American Diabetes Association Professional Practice Committee, 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care 45, S144–S174 (2022). https://doi.org/10.2337/dc22-S010
W. Lu, C. Cheng, Z. Keji, Relationship between abdominal obesity and insulin resistance, growth hormone, and insulin-like growth factor-1 in individuals with type 2 diabetes. Cell. Mol. Biol. (Noisy-le-grand). 68, 36–41 (2022). https://doi.org/10.14715/cmb/2022.68.12.8
R. Granata, Peripheral activities of growth hormone-releasing hormone. J. Endocrinol. Invest. 39, 721–727 (2016). https://doi.org/10.1007/s40618-016-0440-x
Article CAS PubMed Google Scholar
E.J. Gardner, K.A. Kentistou, S. Stankovic, S. Lockhart, E. Wheeler et al. Damaging missense variants in IGF1R implicate a role for IGF-1 resistance in the etiology of type 2 diabetes. Cell Genom. 2, None (2022). https://doi.org/10.1016/j.xgen.2022.100208
Article CAS PubMed Google Scholar
M.E. Simila, J.P. Kontto, J. Virtamo, K.A. Hatonen, L.M. Valsta et al. Insulin-like growth factor I, binding proteins -1 and -3, risk of type 2 diabetes and macronutrient intakes in men. Br. J. Nutr. 121, 938–944 (2019). https://doi.org/10.1017/S0007114519000321
Article CAS PubMed Google Scholar
S.C. Larsson, K. Michaelsson, S. Burgess, IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia 63, 1775–1782 (2020). https://doi.org/10.1007/s00125-020-05190-9
Article CAS PubMed Central PubMed Google Scholar
N.M. Essa, M.O. Elgendy, A. Gabr, M.M. Mahmoud, A.A. Alharbi et al. The efficacy of metformin as adjuvant to chemotherapy on IGF levels in non-diabetic female patients with progressive and non-progressive metastatic breast cancer. Eur. Rev. Med. Pharmacol. Sci 27, 5200–5210 (2023). https://doi.org/10.26355/eurrev_202306_32638
Article CAS PubMed Google Scholar
D.R. Clemmons, Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. North Am. 41, 425–43, (2012). https://doi.org/10.1016/j.ecl.2012.04.017. vii-viii
Article CAS PubMed Central PubMed Google Scholar
S.N. Rajpathak, M.J. Gunter, J. Wylie-Rosett, G.Y. Ho, R.C. Kaplan et al. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab. Res. Rev. 25, 3–12 (2009). https://doi.org/10.1002/dmrr.919
Article CAS PubMed Central PubMed Google Scholar
G.A. Aguirre, J.L. Gonzalez-Guerra, L. Espinosa, I. Castilla-Cortazar, Insulin-like growth factor 1 in the cardiovascular system. Rev. Physiol. Biochem. Pharmacol. 175, 1–45 (2018). https://doi.org/10.1007/112_2017_8
Article CAS PubMed Google Scholar
V. Popii, G. Baumann, Laboratory measurement of growth hormone. Clin. Chim. Acta. 350, 1–16 (2004). https://doi.org/10.1016/j.cccn.2004.06.007
Article CAS PubMed Google Scholar
E. Witkowska-Sedek, B. Pyrzak, Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. Cent. Eur. J. Immunol. 45, 469–475 (2020). https://doi.org/10.5114/ceji.2020.103422
Article CAS PubMed Google Scholar
Y. Chikata, H. Iwata, K. Miyosawa, T. Koike, H. Yasuda et al. Dipeptidyl peptidase-4 inhibitors reduced long-term cardiovascular risk in diabetic patients after percutaneous coronary intervention via insulin-like growth factor-1 axis. Sci. Rep. 12, 5129 (2022). https://doi.org/10.1038/s41598-022-09059-2
Article CAS PubMed Central PubMed Google Scholar
D. Drogan, M.B. Schulze, H. Boeing, T. Pischon, Insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 in relation to the risk of type 2 diabetes mellitus: results from the EPIC-Potsdam Study. Am. J. Epidemiol. 183, 553–560 (2016).
Comments (0)