The effect of SGLT2i on the GH/IGF1 axis in newly diagnosed male T2D patients – a prospective, randomized case–control study

R.J. Perry, G.I. Shulman, Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 295, 14379–14390 (2020). https://doi.org/10.1074/jbc.REV120.008387

Article  CAS  PubMed Central  PubMed  Google Scholar 

M. Packer, S.D. Anker, J. Butler, G. Filippatos, S.J. Pocock et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020). https://doi.org/10.1056/NEJMoa2022190

Article  CAS  PubMed  Google Scholar 

H.J.L. Heerspink, B.V. Stefansson, R. Correa-Rotter, G.M. Chertow, T. Greene et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020). https://doi.org/10.1056/NEJMoa2024816

Article  CAS  PubMed  Google Scholar 

R.C. Baxter, IGF binding proteins in cancer: mechanistic and clinical insights. Nat. Rev. Cancer. 14, 329–341 (2014). https://doi.org/10.1038/nrc3720

Article  CAS  PubMed  Google Scholar 

S. Yakar, J.L. Liu, B. Stannard, A. Butler, D. Accili et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA. 96, 7324–7329 (1999). https://doi.org/10.1073/pnas.96.13.7324

Article  CAS  PubMed Central  PubMed  Google Scholar 

S. Miyamoto, M. Nakamura, K. Yano, G. Ishii, T. Hasebe et al. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci. 98, 685–691 (2007). https://doi.org/10.1111/j.1349-7006.2007.00448.x

Article  CAS  PubMed  Google Scholar 

E. Foulstone, S. Prince, O. Zaccheo, J.L. Burns, J. Harper et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J. Pathol. 205, 145–153 (2005). https://doi.org/10.1002/path.1712

Article  CAS  PubMed  Google Scholar 

S.M. Firth, R.C. Baxter, Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002). https://doi.org/10.1210/er.2001-0033

Article  CAS  PubMed  Google Scholar 

G. Sesti, A. Sciacqua, M. Cardellini, M.A. Marini, R. Maio et al. Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 28, 120–125 (2005). https://doi.org/10.2337/diacare.28.1.120

Article  CAS  PubMed  Google Scholar 

M.S. Lewitt, A. Hilding, K. Brismar, S. Efendic, C.G. Ostenson et al. IGF-binding protein 1 and abdominal obesity in the development of type 2 diabetes in women. Eur. J. Endocrinol. 163, 233–242 (2010). https://doi.org/10.1530/EJE-10-0301

Article  CAS  PubMed Central  PubMed  Google Scholar 

M. Wallander, K. Brismar, J. Ohrvik, L. Ryden, A. Norhammar, Insulin-like growth factor I: a predictor of long-term glucose abnormalities in patients with acute myocardial infarction. Diabetologia 49, 2247–2255 (2006). https://doi.org/10.1007/s00125-006-0386-1

Article  CAS  PubMed  Google Scholar 

M.S. Sandhu, A.H. Heald, J.M. Gibson, J.K. Cruickshank, D.B. Dunger et al. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359, 1740–1745 (2002). https://doi.org/10.1016/S0140-6736(02)08655-5

Article  CAS  PubMed  Google Scholar 

U. Petersson, C.J. Ostgren, L. Brudin, K. Brismar, P.M. Nilsson, Low levels of insulin-like growth-factor-binding protein-1 (IGFBP-1) are prospectively associated with the incidence of type 2 diabetes and impaired glucose tolerance (IGT): the Soderakra Cardiovascular Risk Factor Study. Diabetes Metab 35, 198–205 (2009). https://doi.org/10.1016/j.diabet.2008.11.003

Article  CAS  PubMed  Google Scholar 

M.S. Lewitt, A. Hilding, C.G. Ostenson, S. Efendic, K. Brismar et al. Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 51, 1135–1145 (2008). https://doi.org/10.1007/s00125-008-1016-x

Article  CAS  PubMed  Google Scholar 

C. American Diabetes Association Professional Practice, 2, Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45, S17–S38 (2022). https://doi.org/10.2337/dc22-S002

Article  Google Scholar 

J.C. Levy, D.R. Matthews, M.P. Hermans, Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21, 2191–2192 (1998). https://doi.org/10.2337/diacare.21.12.2191

Article  CAS  PubMed  Google Scholar 

L. Xu, M. Wu, S. Chen, Y. Yang, Y. Wang et al. Triglyceride-glucose index associates with incident heart failure: a cohort study. Diabetes Metab. 48, 101365 (2022). https://doi.org/10.1016/j.diabet.2022.101365

Article  CAS  PubMed  Google Scholar 

S. Srinivasan, P. Singh, V. Kulothungan, T. Sharma, R. Raman, Relationship between triglyceride glucose index, retinopathy and nephropathy in Type 2 diabetes. Endocrinol. Diabetes Metab. 4, e00151 (2021). https://doi.org/10.1002/edm2.151

Article  CAS  PubMed  Google Scholar 

Z. Qin, J. Zhao, J. Geng, K. Chang, R. Liao et al. Higher triglyceride-glucose index is associated with increased likelihood of kidney stones. Front. Endocrinol. (Lausanne). 12, 774567 (2021). https://doi.org/10.3389/fendo.2021.774567

Article  PubMed Central  PubMed  Google Scholar 

American Diabetes Association Professional Practice Committee, 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care 45, S144–S174 (2022). https://doi.org/10.2337/dc22-S010

Article  Google Scholar 

W. Lu, C. Cheng, Z. Keji, Relationship between abdominal obesity and insulin resistance, growth hormone, and insulin-like growth factor-1 in individuals with type 2 diabetes. Cell. Mol. Biol. (Noisy-le-grand). 68, 36–41 (2022). https://doi.org/10.14715/cmb/2022.68.12.8

Article  Google Scholar 

R. Granata, Peripheral activities of growth hormone-releasing hormone. J. Endocrinol. Invest. 39, 721–727 (2016). https://doi.org/10.1007/s40618-016-0440-x

Article  CAS  PubMed  Google Scholar 

E.J. Gardner, K.A. Kentistou, S. Stankovic, S. Lockhart, E. Wheeler et al. Damaging missense variants in IGF1R implicate a role for IGF-1 resistance in the etiology of type 2 diabetes. Cell Genom. 2, None (2022). https://doi.org/10.1016/j.xgen.2022.100208

Article  CAS  PubMed  Google Scholar 

M.E. Simila, J.P. Kontto, J. Virtamo, K.A. Hatonen, L.M. Valsta et al. Insulin-like growth factor I, binding proteins -1 and -3, risk of type 2 diabetes and macronutrient intakes in men. Br. J. Nutr. 121, 938–944 (2019). https://doi.org/10.1017/S0007114519000321

Article  CAS  PubMed  Google Scholar 

S.C. Larsson, K. Michaelsson, S. Burgess, IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia 63, 1775–1782 (2020). https://doi.org/10.1007/s00125-020-05190-9

Article  CAS  PubMed Central  PubMed  Google Scholar 

N.M. Essa, M.O. Elgendy, A. Gabr, M.M. Mahmoud, A.A. Alharbi et al. The efficacy of metformin as adjuvant to chemotherapy on IGF levels in non-diabetic female patients with progressive and non-progressive metastatic breast cancer. Eur. Rev. Med. Pharmacol. Sci 27, 5200–5210 (2023). https://doi.org/10.26355/eurrev_202306_32638

Article  CAS  PubMed  Google Scholar 

D.R. Clemmons, Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. North Am. 41, 425–43, (2012). https://doi.org/10.1016/j.ecl.2012.04.017. vii-viii

Article  CAS  PubMed Central  PubMed  Google Scholar 

S.N. Rajpathak, M.J. Gunter, J. Wylie-Rosett, G.Y. Ho, R.C. Kaplan et al. The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes. Diabetes Metab. Res. Rev. 25, 3–12 (2009). https://doi.org/10.1002/dmrr.919

Article  CAS  PubMed Central  PubMed  Google Scholar 

G.A. Aguirre, J.L. Gonzalez-Guerra, L. Espinosa, I. Castilla-Cortazar, Insulin-like growth factor 1 in the cardiovascular system. Rev. Physiol. Biochem. Pharmacol. 175, 1–45 (2018). https://doi.org/10.1007/112_2017_8

Article  CAS  PubMed  Google Scholar 

V. Popii, G. Baumann, Laboratory measurement of growth hormone. Clin. Chim. Acta. 350, 1–16 (2004). https://doi.org/10.1016/j.cccn.2004.06.007

Article  CAS  PubMed  Google Scholar 

E. Witkowska-Sedek, B. Pyrzak, Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. Cent. Eur. J. Immunol. 45, 469–475 (2020). https://doi.org/10.5114/ceji.2020.103422

Article  CAS  PubMed  Google Scholar 

Y. Chikata, H. Iwata, K. Miyosawa, T. Koike, H. Yasuda et al. Dipeptidyl peptidase-4 inhibitors reduced long-term cardiovascular risk in diabetic patients after percutaneous coronary intervention via insulin-like growth factor-1 axis. Sci. Rep. 12, 5129 (2022). https://doi.org/10.1038/s41598-022-09059-2

Article  CAS  PubMed Central  PubMed  Google Scholar 

D. Drogan, M.B. Schulze, H. Boeing, T. Pischon, Insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 in relation to the risk of type 2 diabetes mellitus: results from the EPIC-Potsdam Study. Am. J. Epidemiol. 183, 553–560 (2016).

Comments (0)

No login
gif