Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703. https://doi.org/10.1128/mmbr.00001-06
Article PubMed PubMed Central Google Scholar
Facchetti G, Chang F, Howard M (2017) Controlling cell size through sizer mechanisms. Curr Opin Syst Biol 5:86–92. https://doi.org/10.1016/j.coisb.2017.08.010
Article PubMed PubMed Central Google Scholar
Sauls JT, Li D, Jun S (2016) Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr Opin Cell Biol 38:38–44. https://doi.org/10.1016/j.ceb.2016.02.004
Article CAS PubMed PubMed Central Google Scholar
Jun S, Taheri-Araghi S (2015) Cell-size maintenance: universal strategy revealed. Trends Microbiol 23:4–6. https://doi.org/10.1016/j.tim.2014.12.001
Article CAS PubMed Google Scholar
Campos M et al (2014) A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–1446. https://doi.org/10.1016/j.cell.2014.11.022
Article CAS PubMed PubMed Central Google Scholar
Taheri-Araghi S et al (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391. https://doi.org/10.1016/j.cub.2014.12.009
Article CAS PubMed Google Scholar
Willis L, Huang KC (2017) Sizing up the bacterial cell cycle. Nat Rev Microbiol 15:606–620. https://doi.org/10.1038/nrmicro.2017.79
Article CAS PubMed Google Scholar
Mahone CR, Goley ED (2020) Bacterial cell division at a glance. J Cell Sci 133:1–7. https://doi.org/10.1242/jcs.237057
Rowlett VW, Margolin W (2013) The bacterial min system. Curr Biol 23:R553–R556. https://doi.org/10.1016/j.cub.2013.05.024
Article CAS PubMed Google Scholar
Cho H, Bernhardt TG (2013) Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003304
Article PubMed PubMed Central Google Scholar
Cho H, McManus HR, Dove SL, Bernhardt TG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108:3773–3778. https://doi.org/10.1073/pnas.1018674108
Article PubMed PubMed Central Google Scholar
Tonthat NK et al (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30:154–164. https://doi.org/10.1038/emboj.2010.288
Article CAS PubMed Google Scholar
Tonthat NK et al (2013) SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid. Proc Natl Acad Sci USA 110:10586–10591. https://doi.org/10.1073/pnas.1221036110
Article PubMed PubMed Central Google Scholar
Dupaigne P et al (2012) Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell 48:560–571. https://doi.org/10.1016/j.molcel.2012.09.009
Article CAS PubMed PubMed Central Google Scholar
Mercier R et al (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135:475–485. https://doi.org/10.1016/j.cell.2008.08.031
Article CAS PubMed Google Scholar
Espéli O et al (2012) A MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 31:3198–3211. https://doi.org/10.1038/emboj.2012.128
Article CAS PubMed PubMed Central Google Scholar
Monterroso B et al (2019) The bacterial DNA binding protein matp involved in linking the nucleoid terminal domain to the divisome at midcell interacts with lipid membranes. MBio. https://doi.org/10.1128/mBio.00376-19
Article PubMed PubMed Central Google Scholar
Castillo DE, Yang D, Siopsis G, Männik J (2016) The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli. Nucleic Acids Res 44:1216–1226. https://doi.org/10.1093/nar/gkv1484
Article CAS PubMed PubMed Central Google Scholar
Monds RD et al (2014) Systematic perturbation of cytoskeletal function reveals a linear scaling relationship between cell geometry and fitness. Cell Rep 9:1528–1537. https://doi.org/10.1016/j.celrep.2014.10.040
Article CAS PubMed PubMed Central Google Scholar
Amodeo AA, Skotheim JM (2016) Cell-size control. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a019083
Article PubMed PubMed Central Google Scholar
Cesar S, Huang KC (2017) Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 41:672–678. https://doi.org/10.1093/femsre/fux026
Article CAS PubMed PubMed Central Google Scholar
Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164. https://doi.org/10.1038/354161a0
Article CAS PubMed Google Scholar
Schaechter M, Maaløe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592–606. https://doi.org/10.1099/00221287-19-3-592
Article CAS PubMed Google Scholar
Vadia S, Levin PA (2015) Growth rate and cell size: a re-examination of the growth law. Curr Opin Microbiol 24:96–103. https://doi.org/10.1016/j.mib.2015.01.011
Article PubMed PubMed Central Google Scholar
Heinrich K, Leslie DJ, Morlock M, Bertilsson S, Jonas K (2019) Molecular basis and ecological relevance of Caulobacter cell filamentation in freshwater habitats. MBio 10:1–17. https://doi.org/10.1128/mbio.01557-19
Navarro Llorens JM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495. https://doi.org/10.1111/j.1574-6976.2010.00213.x
Article CAS PubMed Google Scholar
Bergmiller T, Pẽa-Miller R, Boehm A, Ackermann M (2011) Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD. BMC Microbiol 11:1–12. https://doi.org/10.1186/1471-2180-11-118
Rojas E, Theriot JA, Huang KC (2014) Response of Escherichia coli growth rate to osmotic shock. Proc Natl Acad Sci USA 111:7807–7812. https://doi.org/10.1073/pnas.1402591111
Article CAS PubMed PubMed Central Google Scholar
Si F et al (2019) Mechanistic origin of cell-size control and homeostasis in bacteria. Curr Biol 29:1760-1770.e7. https://doi.org/10.1016/j.cub.2019.04.062
Article CAS PubMed PubMed Central Google Scholar
Schramm FD, Schroeder K, Jonas K (2019) Protein aggregation in bacteria. FEMS Microbiol Rev 44:54–72. https://doi.org/10.1093/femsre/fuz026
Article CAS PubMed Central Google Scholar
Govers SK, Dutré P, Aertsen A (2014) In vivo disassembly and reassembly of protein aggregates in Escherichia coli. J Bacteriol 196:2325–2332. https://doi.org/10.1128/jb.01549-14
Article PubMed PubMed Central Google Scholar
Winkler J et al (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923. https://doi.org/10.1038/emboj.2009.412
Article CAS PubMed PubMed Central Google Scholar
Coquel AS et al (2013) localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol 9:1–14. https://doi.org/10.1371/journal.pcbi.1003038
Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105:3076–3081. https://doi.org/10.1073/pnas.0708931105
Comments (0)