Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis

Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703. https://doi.org/10.1128/mmbr.00001-06

Article  PubMed  PubMed Central  Google Scholar 

Facchetti G, Chang F, Howard M (2017) Controlling cell size through sizer mechanisms. Curr Opin Syst Biol 5:86–92. https://doi.org/10.1016/j.coisb.2017.08.010

Article  PubMed  PubMed Central  Google Scholar 

Sauls JT, Li D, Jun S (2016) Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr Opin Cell Biol 38:38–44. https://doi.org/10.1016/j.ceb.2016.02.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jun S, Taheri-Araghi S (2015) Cell-size maintenance: universal strategy revealed. Trends Microbiol 23:4–6. https://doi.org/10.1016/j.tim.2014.12.001

Article  CAS  PubMed  Google Scholar 

Campos M et al (2014) A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–1446. https://doi.org/10.1016/j.cell.2014.11.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taheri-Araghi S et al (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391. https://doi.org/10.1016/j.cub.2014.12.009

Article  CAS  PubMed  Google Scholar 

Willis L, Huang KC (2017) Sizing up the bacterial cell cycle. Nat Rev Microbiol 15:606–620. https://doi.org/10.1038/nrmicro.2017.79

Article  CAS  PubMed  Google Scholar 

Mahone CR, Goley ED (2020) Bacterial cell division at a glance. J Cell Sci 133:1–7. https://doi.org/10.1242/jcs.237057

Article  CAS  Google Scholar 

Rowlett VW, Margolin W (2013) The bacterial min system. Curr Biol 23:R553–R556. https://doi.org/10.1016/j.cub.2013.05.024

Article  CAS  PubMed  Google Scholar 

Cho H, Bernhardt TG (2013) Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003304

Article  PubMed  PubMed Central  Google Scholar 

Cho H, McManus HR, Dove SL, Bernhardt TG (2011) Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc Natl Acad Sci U S A 108:3773–3778. https://doi.org/10.1073/pnas.1018674108

Article  PubMed  PubMed Central  Google Scholar 

Tonthat NK et al (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30:154–164. https://doi.org/10.1038/emboj.2010.288

Article  CAS  PubMed  Google Scholar 

Tonthat NK et al (2013) SlmA forms a higher-order structure on DNA that inhibits cytokinetic Z-ring formation over the nucleoid. Proc Natl Acad Sci USA 110:10586–10591. https://doi.org/10.1073/pnas.1221036110

Article  PubMed  PubMed Central  Google Scholar 

Dupaigne P et al (2012) Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol Cell 48:560–571. https://doi.org/10.1016/j.molcel.2012.09.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mercier R et al (2008) The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135:475–485. https://doi.org/10.1016/j.cell.2008.08.031

Article  CAS  PubMed  Google Scholar 

Espéli O et al (2012) A MatP–divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J 31:3198–3211. https://doi.org/10.1038/emboj.2012.128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monterroso B et al (2019) The bacterial DNA binding protein matp involved in linking the nucleoid terminal domain to the divisome at midcell interacts with lipid membranes. MBio. https://doi.org/10.1128/mBio.00376-19

Article  PubMed  PubMed Central  Google Scholar 

Castillo DE, Yang D, Siopsis G, Männik J (2016) The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli. Nucleic Acids Res 44:1216–1226. https://doi.org/10.1093/nar/gkv1484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monds RD et al (2014) Systematic perturbation of cytoskeletal function reveals a linear scaling relationship between cell geometry and fitness. Cell Rep 9:1528–1537. https://doi.org/10.1016/j.celrep.2014.10.040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amodeo AA, Skotheim JM (2016) Cell-size control. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a019083

Article  PubMed  PubMed Central  Google Scholar 

Cesar S, Huang KC (2017) Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 41:672–678. https://doi.org/10.1093/femsre/fux026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164. https://doi.org/10.1038/354161a0

Article  CAS  PubMed  Google Scholar 

Schaechter M, Maaløe O, Kjeldgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592–606. https://doi.org/10.1099/00221287-19-3-592

Article  CAS  PubMed  Google Scholar 

Vadia S, Levin PA (2015) Growth rate and cell size: a re-examination of the growth law. Curr Opin Microbiol 24:96–103. https://doi.org/10.1016/j.mib.2015.01.011

Article  PubMed  PubMed Central  Google Scholar 

Heinrich K, Leslie DJ, Morlock M, Bertilsson S, Jonas K (2019) Molecular basis and ecological relevance of Caulobacter cell filamentation in freshwater habitats. MBio 10:1–17. https://doi.org/10.1128/mbio.01557-19

Article  CAS  Google Scholar 

Navarro Llorens JM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495. https://doi.org/10.1111/j.1574-6976.2010.00213.x

Article  CAS  PubMed  Google Scholar 

Bergmiller T, Pẽa-Miller R, Boehm A, Ackermann M (2011) Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD. BMC Microbiol 11:1–12. https://doi.org/10.1186/1471-2180-11-118

Article  CAS  Google Scholar 

Rojas E, Theriot JA, Huang KC (2014) Response of Escherichia coli growth rate to osmotic shock. Proc Natl Acad Sci USA 111:7807–7812. https://doi.org/10.1073/pnas.1402591111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Si F et al (2019) Mechanistic origin of cell-size control and homeostasis in bacteria. Curr Biol 29:1760-1770.e7. https://doi.org/10.1016/j.cub.2019.04.062

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schramm FD, Schroeder K, Jonas K (2019) Protein aggregation in bacteria. FEMS Microbiol Rev 44:54–72. https://doi.org/10.1093/femsre/fuz026

Article  CAS  PubMed Central  Google Scholar 

Govers SK, Dutré P, Aertsen A (2014) In vivo disassembly and reassembly of protein aggregates in Escherichia coli. J Bacteriol 196:2325–2332. https://doi.org/10.1128/jb.01549-14

Article  PubMed  PubMed Central  Google Scholar 

Winkler J et al (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923. https://doi.org/10.1038/emboj.2009.412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coquel AS et al (2013) localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLoS Comput Biol 9:1–14. https://doi.org/10.1371/journal.pcbi.1003038

Article  CAS  Google Scholar 

Lindner AB, Madden R, Demarez A, Stewart EJ, Taddei F (2008) Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci USA 105:3076–3081. https://doi.org/10.1073/pnas.0708931105

Article  PubMed  PubMed Central 

Comments (0)

No login
gif