Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Linn YL, Chee MY, Koh YX, et al. Actual 10-year survivors and 10-year recurrence free survivors after primary liver resection for hepatocellular carcinoma in the 21st century: a single institution contemporary experience. J Surg Oncol. 2021;123:214–21.
Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell. 2013;152:1270–84.
Article CAS PubMed Google Scholar
Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17:661–78.
Article CAS PubMed Google Scholar
Wang J, Tao H, Li H, et al. 3D genomic organization in cancers. Quant Biol. 2023;11:109–21.
Liu Z, Chen Y, Xia Q, et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science. 2023;380:1070–6.
Barutcu AR, Lajoie BR, McCord RP, et al. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 2015;16:214.
Article PubMed PubMed Central Google Scholar
Wu P, Li T, Li R, et al. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun. 2017;8:1937.
Article PubMed PubMed Central Google Scholar
Taberlay PC, Achinger-Kawecka J, Lun AT, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–31.
Article CAS PubMed PubMed Central Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Rao SS, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
Article CAS PubMed PubMed Central Google Scholar
Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889.
Article PubMed PubMed Central Google Scholar
Zhang F, Shen Z, Yu C, et al. Advances in three-dimensional genomics. Sheng Wu Gong Cheng Xue Bao. 2020;36:2791–812.
Nora EP, Lajoie BR, Schulz EG, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5.
Article CAS PubMed PubMed Central Google Scholar
Zuin J, Dixon JR, van der Reijden MI, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A. 2014;111:996–1001.
Article CAS PubMed Google Scholar
Feng Y, Wang P, Cai L, et al. 3D-epigenomic regulation of gene transcription in hepatocellular carcinoma. Adv Genet (Hoboken, NJ). 2022;3:2100010.
Cao P, Yang A, Li P, et al. Genomic gain of RRS1 promotes hepatocellular carcinoma through reducing the RPL11-MDM2-p53 signaling. Sci Adv. 2021;7:eabf4304.
Liu T, Wang J, Yang H, et al. Enhancer coamplification and hijacking promote oncogene expression in liposarcoma. Cancer Res. 2023;83:1517–1530.
Article CAS PubMed PubMed Central Google Scholar
Corces MR, Granja JM, Shams S, et al. The chromatin accessibility landscape of primary human cancers. Science (New York, NY). 2018;362:eaav1898.
Zhang Y, Chen F, Fonseca NA, et al. High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nat Commun. 2020;11:736.
Article CAS PubMed PubMed Central Google Scholar
Xu D, Ma R, Zhang J, et al. Dynamic nature of CTCF tandem 11 zinc fingers in multivalent recognition of DNA as revealed by NMR spectroscopy. J Phys Chem Lett. 2018;9:4020–8.
Article CAS PubMed Google Scholar
Gao T, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020;48:D58–64.
Zhao S, Zhang Y, Lu X, et al. CDC20 regulates the cell proliferation and radiosensitivity of P53 mutant HCC cells through the Bcl-2/Bax pathway. Int J Biol Sci. 2021;17:3608–21.
Article CAS PubMed PubMed Central Google Scholar
Yang L, Zhang Z, Sun Y, et al. Integrative analysis reveals novel driver genes and molecular subclasses of hepatocellular carcinoma. Aging (Albany NY). 2020;12:23849–71.
Article CAS PubMed Google Scholar
Wang R, Xu Z, Tian J, et al. Pterostilbene inhibits hepatocellular carcinoma proliferation and HBV replication by targeting ribonucleotide reductase M2 protein. Am J Cancer Res. 2021;11:2975–89.
CAS PubMed PubMed Central Google Scholar
Zhao X, Qin W, Jiang Y, et al. ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma. NPJ Precis Oncol. 2020;4:7.
Article CAS PubMed PubMed Central Google Scholar
Ni XC, Yi Y, Fu YP, et al. Role of lipids and apolipoproteins in predicting the prognosis of hepatocellular carcinoma after resection. Onco Targets Ther. 2020;13:12867–80.
Article CAS PubMed PubMed Central Google Scholar
Liu L, Wu J, Wang S, et al. PKMYT1 promoted the growth and motility of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling. Exp Cell Res. 2017;358:209–16.
Article CAS PubMed Google Scholar
Dai X, Theobard R, Cheng H, et al. Fusion genes: a promising tool combating against cancer. Biochim Biophys Acta Rev Cancer. 2018;1869:149–60.
Article CAS PubMed Google Scholar
Picco G, Chen ED, Alonso LG, et al. Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nat Commun. 2019;10:2198.
Article PubMed PubMed Central Google Scholar
Guler GD, Tindell CA, Pitti R, et al. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell. 2017;32:221-37.e13.
Article CAS PubMed Google Scholar
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74–88.
Article CAS PubMed Google Scholar
Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.
Article CAS PubMed Google Scholar
Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58:726–41.
Article CAS PubMed Google Scholar
Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature. 1997;389:300–5.
Article CAS PubMed Google Scholar
Gu MM, Gao D, Yao PA, et al. p53-inducible gene 3 promotes cell migration and invasion by activating the FAK/Src pathway in lung adenocarcinoma. Cancer Sci. 2018;109:3783–93.
Article CAS PubMed PubMed Central Google Scholar
Li M, Li S, Liu B, et al. PIG3 promotes NSCLC cell mitotic progression and is associated with poor prognosis of NSCLC patients. J Exp Clin Cancer Res. 2017;36:39.
Article PubMed PubMed Central Google Scholar
Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200–6.
van der Vliet HN, Sammels MG, Leegwater AC, et al. Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem. 2001;276:44512–20.
Cabello I, Alia P, Pinto X, et al. Association of APOA5 and APOC3 genetic polymorphisms with severity of hypertriglyceridemia in patients with cutaneous T-cell lymphoma treated with bexarotene. JAMA Dermatol. 2018;154:1424–31.
Comments (0)