SRSF1 is essential for primary follicle development by regulating granulosa cell survival via mRNA alternative splicing

Edson MA, Nagaraja AK, Matzuk MM (2009) The mammalian ovary from genesis to revelation. Endocr Rev 30(6):624–712. https://doi.org/10.1210/er.2009-0012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Albertini DF (2013) The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol 14(3):141–152. https://doi.org/10.1038/nrm3531

Article  CAS  PubMed  Google Scholar 

Albertini DF (1992) Regulation of meiotic maturation in the mammalian oocyte: interplay between exogenous cues and the microtubule cytoskeleton. BioEssays 14(2):97–103. https://doi.org/10.1002/bies.950140205

Article  CAS  PubMed  Google Scholar 

Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF (2000) Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 226(2):167–179. https://doi.org/10.1006/dbio.2000.9863

Article  CAS  PubMed  Google Scholar 

Meduri G, Massin N, Guibourdenche J, Bachelot A, Fiori O, Kuttenn F, Misrahi M, Touraine P (2007) Serum anti-Mullerian hormone expression in women with premature ovarian failure. Hum Reprod 22(1):117–123. https://doi.org/10.1093/humrep/del346

Article  CAS  PubMed  Google Scholar 

Chon SJ, Umair Z, Yoon MS (2021) Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol 9:672890. https://doi.org/10.3389/fcell.2021.672890

Article  PubMed  PubMed Central  Google Scholar 

Zhang QY, Li X, Zhou XY, Li Y, Zhang J, Zhang XF, Liu YD, Chen YX, Wu XM, Ma LZ, Chen X, Chen SL (2022) Study of differential proteomics in granulosa cells of premature ovarian insufficiency (POI) and the roles and mechanism of RAC1 in granulosa cells. Mol Cell Endocrinol 555:111719. https://doi.org/10.1016/j.mce.2022.111719

Article  CAS  PubMed  Google Scholar 

Luan Y, Xu P, Yu SY, Kim SY (2021) The role of mutant p63 in female fertility. Int J Mol Sci. https://doi.org/10.3390/ijms22168968

Article  PubMed  PubMed Central  Google Scholar 

Zhe J, Chen S, Chen X, Liu Y, Li Y, Zhou X, Zhang J (2019) A novel heterozygous splice-altering mutation in HFM1 may be a cause of premature ovarian insufficiency. J Ovarian Res 12(1):61. https://doi.org/10.1186/s13048-019-0537-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh G, Adams JA (2011) Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 278(4):587–597. https://doi.org/10.1111/j.1742-4658.2010.07992.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, Hoang A, Chakrabarti S, Huynh N, Huang DB, Ghosh G (2011) The SRSF1 linker induces semi-conservative ESE binding by cooperating with the RRMs. Nucleic Acids Res 39(21):9413–9421. https://doi.org/10.1093/nar/gkr663

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, Hoang A, Sinha R, Zhong XY, Fu XD, Krainer AR, Ghosh G (2011) Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1–70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci U S A 108(20):8233–8238. https://doi.org/10.1073/pnas.1017700108

Article  PubMed  PubMed Central  Google Scholar 

Das S, Krainer AR (2014) Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12(9):1195–1204. https://doi.org/10.1158/1541-7786.MCR-14-0131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anczukow O, Akerman M, Clery A, Wu J, Shen C, Shirole NH, Raimer A, Sun S, Jensen MA, Hua Y, Allain FH, Krainer AR (2015) SRSF1-regulated alternative splicing in breast cancer. Mol Cell 60(1):105–117. https://doi.org/10.1016/j.molcel.2015.09.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anczukow O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, Muthuswamy SK, Krainer AR (2012) The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19(2):220–228. https://doi.org/10.1038/nsmb.2207

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paz S, Ritchie A, Mauer C, Caputi M (2021) The RNA binding protein SRSF1 is a master switch of gene expression and regulation in the immune system. Cytokine Growth Factor Rev 57:19–26. https://doi.org/10.1016/j.cytogfr.2020.10.008

Article  CAS  PubMed  Google Scholar 

Katsuyama T, Moulton VR (2021) Splicing factor SRSF1 is indispensable for regulatory T cell homeostasis and function. Cell Rep 36(1):109339. https://doi.org/10.1016/j.celrep.2021.109339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye Y, Yu F, Li Z, Xie Y, Yu X (2021) RNA binding protein serine/arginine splicing factor 1 promotes the proliferation, migration and invasion of hepatocellular carcinoma by interacting with RecQ protein-like 4 mRNA. Bioengineered 12(1):6144–6154. https://doi.org/10.1080/21655979.2021.1972785

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Lv Z, Chen X, Wang C, Lv P, Yan L, Tian S, Xie X, Yao X, Liu J, Wang Z, Luo H, Cui S, Liu J (2023) SRSF1 regulates primordial follicle formation and number determination during meiotic prophase I. BMC Biol 21(1):49. https://doi.org/10.1186/s12915-023-01549-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Zhang Y, Zhang J, Du X, Li Q, Pan Z (2022) circSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820–5p sponging. Int J Mol Sci. https://doi.org/10.3390/ijms23031509

Article  PubMed  PubMed Central  Google Scholar 

Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR Jr, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross J Jr, Chen J, Xiao RP, Cheng H, Fu XD (2005) ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120(1):59–72. https://doi.org/10.1016/j.cell.2004.11.036

Article  CAS  PubMed  Google Scholar 

Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K (2014) Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 23(4):920–928. https://doi.org/10.1093/hmg/ddt486

Article  CAS  PubMed  Google Scholar 

Hoage TR, Cameron IL (1976) Folliculogenesis in the ovary of the mature mouse: a radioautographic study. Anat Rec 184(4):699–709. https://doi.org/10.1002/ar.1091840409

Article  CAS  PubMed  Google Scholar 

Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12(13):1998–2012. https://doi.org/10.1101/gad.12.13.1998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krainer AR, Conway GC, Kozak D (1990) The essential pre-mRNA splicing factor SF2 influences 5´ splice site selection by activating proximal sites. Cell 62(1):35–42. https://doi.org/10.1016/0092-8674(90)90237-9

Article  CAS  PubMed  Google Scholar 

Gratzner HG, Leif RC, Ingram DJ, Castro A (1975) The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp Cell Res 95(1):88–94. https://doi.org/10.1016/0014-4827(75)90612-6

Article  CAS  PubMed  Google Scholar 

Guo YL, Chen ZC, Li N, Tian CJ, Cheng DJ, Tang XY, Zhang LX, Zhang XY (2022) SRSF1 promotes ASMC proliferation in asthma by competitively binding CCND2 with miRNA-135a. Pulm Pharmacol Ther 77:102173. https://doi.org/10.1016/j.pupt.2022.102173

Article  CAS  PubMed  Google Scholar 

Liu SS, Bai YS, Feng L, Dong WW, Li Y, Xu LP, Ma NF (2016) Identification of CHD1L as an important regulator for spermatogonial stem cell survival and self-renewal. Stem Cells Int. https://doi.org/10.1155/2016/4069543

Article  PubMed  PubMed Central  Google Scholar 

Tsuda M, Cho K, Ooka M, Shimizu N, Watanabe R, Yasui A, Nakazawa Y, Ogi T, Harada H, Agama K, Nakamura J, Asada R, Fujiike H, Sakuma T, Yamamoto T, Murai J, Hiraoka M, Koike K, Pommier Y, Takeda S, Hirota K (2017) ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair. PLoS ONE 12(11):e0188320. https://doi.org/10.1371/journal.pone.0188320

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Chen K, Chen Z (2021) Structural basis of ALC1/CHD1L autoinhibition and the mechanism of activation by the nucleosome. Nat Commun 12(1):4057. https://doi.org/10.1038/s41467-021-24320-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12(1):80–86.

Comments (0)

No login
gif