Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026
Article CAS PubMed Google Scholar
Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018
Article CAS PubMed PubMed Central Google Scholar
Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782
Article CAS PubMed PubMed Central Google Scholar
Cecconi F, Levine B (2008) The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344–357. https://doi.org/10.1016/j.devcel.2008.08.012
Article CAS PubMed PubMed Central Google Scholar
Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124:903–913. https://doi.org/10.1083/jcb.124.6.903
Article CAS PubMed Google Scholar
Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699. https://doi.org/10.1016/j.jmb.2016.02.021
Article CAS PubMed PubMed Central Google Scholar
Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174. https://doi.org/10.1016/0014-5793(93)80398-e
Article CAS PubMed Google Scholar
Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005
Article CAS PubMed Google Scholar
Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122. https://doi.org/10.1146/annurev-biophys-060414-034248
Article CAS PubMed Google Scholar
Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. https://doi.org/10.1093/emboj/19.21.5720
Article CAS PubMed PubMed Central Google Scholar
Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298. https://doi.org/10.1091/mbc.e07-12-1292
Article CAS PubMed PubMed Central Google Scholar
Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation mediates membrane tethering and hemifusion. Cell. https://doi.org/10.1016/j.cell.2007.05.021
Fujita N, Hayashi-Nishino M, Fukumoto H et al (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651–4659. https://doi.org/10.1091/mbc.e08-03-0312
Article CAS PubMed PubMed Central Google Scholar
Nakatogawa H, Ishii J, Asai E, Ohsumi Y (2012) Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8:177–186. https://doi.org/10.4161/auto.8.2.18373
Article CAS PubMed Google Scholar
Choy A, Dancourt J, Mugo B et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076. https://doi.org/10.1126/science.1227026
Article CAS PubMed PubMed Central Google Scholar
Cervantes S, Bunnik EM, Saraf A et al (2014) The multifunctional autophagy pathway in the human malaria parasite Plasmodium falciparum. Autophagy. https://doi.org/10.4161/auto.26743
Brennand A, Gualdrón-lópez M, Coppens I et al (2011) Autophagy in parasitic protists: unique features and drug targets. Mol Biochem Parasitol 177:83–99. https://doi.org/10.1016/j.molbiopara.2011.02.003
Article CAS PubMed Google Scholar
Duszenko M, Ginger ML, Brennand A et al (2011) Autophagy in protists. Autophagy 7:127–158. https://doi.org/10.4161/auto.7.2.13310
Article CAS PubMed PubMed Central Google Scholar
Kitamura K, Kishi-itakura C, Tsuboi T et al (2012) Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE. https://doi.org/10.1371/journal.pone.0042977
Article PubMed PubMed Central Google Scholar
Taylor P, Jayabalasingham B, Voss C et al (2014) Characterization of the ATG8-conjugation system in 2 Plasmodium species with special focus on the liver stage possible linkage between the apicoplastic and autophagic systems ? Autophagy. https://doi.org/10.4161/auto.27166
Eickel N, Kaiser G, Prado M et al (2013) Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 9:568–580
Article CAS PubMed PubMed Central Google Scholar
Tomlins AM, Ben-rached F, Williams RAM et al (2013) Plasmodium falciparum ATG8 implicated in both autophagy and apicoplast formation. Autophagy. https://doi.org/10.4161/auto.25832
Walczak M, Ganesan SM, Niles JC, Yeh E (2018) ATG8 is essential specifically for an autophagy-independent function in apicoplast biogenesis in blood-stage malaria parasites. mBio 9:1–13
Lévêque MF, Berry L, Cipriano MJ et al (2015) Autophagy-related protein ATG8 has a noncanonical function for apicoplast inheritance in Toxoplasma gondii. mBio. https://doi.org/10.1128/mBio.01446-15.Invited
Article PubMed PubMed Central Google Scholar
Walker DM, Mahfooz N, Kemme KA et al (2013) Plasmodium falciparum erythrocytic stage parasites require the putative autophagy protein PfAtg7 for normal growth. PLoS ONE 8:2–9. https://doi.org/10.1371/journal.pone.0067047
Bansal P, Tripathi A et al (2017) Autophagy-related protein ATG18 regulates apicoplast biogenesis in apicomplexan parasites. mBio 8:5–01468
Kong-hap MA, Mouammine A, Daher W et al (2013) Regulation of ATG8 membrane association by ATG4 in the parasitic protist Toxoplasma gondii. Autophagy. https://doi.org/10.4161/auto.25189
Tang Y, Meister TR, Walczak M et al (2019) A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000136
Article PubMed PubMed Central Google Scholar
Gupta R, Mishra A, Choudhary HH et al (2020) Secreted protein with altered thrombospondin repeat (SPATR) is essential for asexual blood stages but not required for hepatocyte invasion by the malaria parasite Plasmodium berghei. Mol Microbiol 113:478–491. https://doi.org/10.1111/mmi.14432
Article CAS PubMed Google Scholar
Janse CJ, Ramesar J, Waters AP (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1:346–356. https://doi.org/10.1038/nprot.2006.53
Article CAS PubMed Google Scholar
Gomes AR, Bushell E, Schwach F et al (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host Microbe 17:404–413. https://doi.org/10.1016/j.chom.2015.01.014
Article CAS PubMed PubMed Central Google Scholar
Godiska R, Mead D, Dhodda V et al (2010) Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli. Nucleic Acids Res 38:e88. https://doi.org/10.1093/nar/gkp1181
Article CAS PubMed Google Scholar
Charan M, Choudhary HH, Singh N et al (2017) [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite. FEBS J 284:2629–2648. https://doi.org/10.1111/febs.14159
Article CAS PubMed Google Scholar
Al-Nihmi FMA, Kolli SK, Reddy SR et al (2017) A novel and conserved plasmodium sporozoite membrane protein SPELD is required for maturation of exo-erythrocytic forms. Sci Rep 7:40407. https://doi.org/10.1038/srep40407
Article CAS PubMed PubMed Central Google Scholar
Choudhary HH, Gupta R, Mishra S (2019) PKAc is not required for the preerythrocytic stages of Plasmodium berghei. Life 2:1–11
Comments (0)