Alaghband Y, Marshall JF (2013) Common influences of non-competitive NMDA receptor antagonists on the consolidation and reconsolidation of cocaine-cue memory. Psychopharmacology 226(4):707–719. https://doi.org/10.1007/s00213-012-2793-y
Article CAS PubMed Google Scholar
Boulland JL, Levy LM (2005) Glutamate, glutamine and ischaemia in the central nervous system. Tidsskr nor Laegeforen 125(11):1479–1481
Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814. https://doi.org/10.1007/s00018-013-1550-7
Article CAS PubMed Google Scholar
Brittain MK, Brustovetsky T, Brittain JM, Khanna R, Cummins TR, Brustovetsky N (2012) Ifenprodil, a NR2B-selective antagonist of NMDA receptor, inhibits reverse Na+/Ca2+ exchanger in neurons. Neuropharmacology 63(6):974–982. https://doi.org/10.1016/j.neuropharm.2012.07.012
Article CAS PubMed PubMed Central Google Scholar
Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, Hudry E, Bacskai BJ (2020) Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 11(1):2146. https://doi.org/10.1038/s41467-020-16074-2
Article CAS PubMed PubMed Central Google Scholar
Charousaei A, Nasehi M, Babapour V, Vaseghi S, Zarrindast MR (2021) The effect of 5-HT(4) serotonin receptors in the CA3 hippocampal region on D-AP5-induced anxiolytic-like effects: isobolographic analyses. Behav Brain Res 397:112933. https://doi.org/10.1016/j.bbr.2020.112933
Article CAS PubMed Google Scholar
Chen YW, Actor-Engel H, Sherpa AD, Klingensmith L, Chowdhury TG, Aoki C (2017) NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 222(5):2271–2294. https://doi.org/10.1007/s00429-016-1341-7
Article CAS PubMed Google Scholar
Chen G, Li T, Xiao J, Wang J, Shang Q, Qian H, Qiao C, Zhang P, Chen T, Liu X (2020) Ifenprodil attenuates methamphetamine-induced behavioral sensitization through the GluN2B-PP2A-AKT cascade in the dorsal striatum of mice. Neurochem Res 45(4):891–901. https://doi.org/10.1007/s11064-020-02966-8
Article CAS PubMed Google Scholar
Chen S, Chen L, Ye L, Jiang Y, Li Q, Zhang H, Zhang R, Li H, Yu D, Zhang R, Niu Y, Zhao Q, Liu J, Ouyang G, Aschner M, Zheng Y, Zhang L, Chen W, Li D (2022) PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. J Hazard Mater 424(Pt C):127624. https://doi.org/10.1016/j.jhazmat.2021.127624
Article CAS PubMed Google Scholar
Cogliati S, Cabrera-Alarcón JL, Enriquez JA (2021) Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans 49(6):2655–2668. https://doi.org/10.1042/bst20210460
Article CAS PubMed PubMed Central Google Scholar
Dai HB, Xu MM, Lv J, Ji XJ, Zhu SH, Ma RM, Miao XL, Duan ML (2016) Mild hypothermia combined with hydrogen sulfide treatment during resuscitation reduces hippocampal neuron apoptosis via NR2A, NR2B, and PI3K-Akt signaling in a rat model of cerebral ischemia-reperfusion injury. Mol Neurobiol 53(7):4865–4873. https://doi.org/10.1007/s12035-015-9391-z
Article CAS PubMed Google Scholar
Decker JM, Krüger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E, Mandelkow EM (2016) The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep 17(4):552–569. https://doi.org/10.15252/embr.201541439
Article CAS PubMed PubMed Central Google Scholar
Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabò R, Menazza S, Semenzato M (2011) Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal 14(5):881–891. https://doi.org/10.1089/ars.2010.3375
Article CAS PubMed Google Scholar
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of alzheimer’s disease. Nat Neurosci 22(3):401–412. https://doi.org/10.1038/s41593-018-0332-9
Article CAS PubMed PubMed Central Google Scholar
Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas-Zarate C (2012) Structure and function of NMDA-type glutamate receptor subunits. Neurologia 27(5):301–310. https://doi.org/10.1016/j.nrl.2011.10.014
Article CAS PubMed Google Scholar
Fukumori R, Takarada T, Kambe Y, Nakazato R, Fujikawa K, Yoneda Y (2012) Possible involvement of mitochondrial uncoupling protein-2 in cytotoxicity mediated by acquired N-methyl-D-aspartate receptor channels. Neurochem Int 61(4):498–505. https://doi.org/10.1016/j.neuint.2012.03.019
Article CAS PubMed Google Scholar
Gascón S, Deogracias R, Sobrado M, Roda JM, Renart J, Rodríguez-Peña A, Díaz-Guerra M (2005) Transcription of the NR1 subunit of the N-methyl-D-aspartate receptor is down-regulated by excitotoxic stimulation and cerebral ischemia. J Biol Chem 280(41):35018–35027. https://doi.org/10.1074/jbc.M504108200
Article CAS PubMed Google Scholar
Gascón S, Sobrado M, Roda JM, Rodríguez-Peña A, Díaz-Guerra M (2008) Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry 13(1):99–114. https://doi.org/10.1038/sj.mp.4002017
Article CAS PubMed Google Scholar
Hammond MS, Sims C, Parameshwaran K, Suppiramaniam V, Schachner M, Dityatev A (2006) Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-D-aspartate receptors and prevents glutamate-induced cell death. J Biol Chem 281(46):34859–34869. https://doi.org/10.1074/jbc.M602568200
Article CAS PubMed Google Scholar
He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005
Article CAS PubMed Google Scholar
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y (2021) Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 99(12):3204–3221. https://doi.org/10.1002/jnr.24937
Article CAS PubMed Google Scholar
Lee JH, Wei ZZ, Chen D, Gu X, Wei L, Yu SP (2015) A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse. Am J Physiol Cell Physiol 308(7):C570-577. https://doi.org/10.1152/ajpcell.00353.2014
Article CAS PubMed PubMed Central Google Scholar
Liraz-Zaltsman S, Yaka R, Shabashov D, Shohami E, Biegon A (2016) Neuroinflammation-induced memory deficits are amenable to treatment with D-Cycloserine. J Mol Neurosci 60(1):46–62. https://doi.org/10.1007/s12031-016-0786-8
Article CAS PubMed Google Scholar
Lu Y, Zhang J, Ma B, Li K, Li X, Bai H, Yang Q, Zhu X, Ben J, Chen Q (2012) Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 61(5):649–658. https://doi.org/10.1016/j.neuint.2012.07.005
Article CAS PubMed Google Scholar
Ludhiadch A, Sharma R, Muriki A, Munshi A (2022) Role of calcium homeostasis in ischemic stroke: a review. CNS Neurol Disord Drug Targets 21(1):52–61. https://doi.org/10.2174/1871527320666210212141232
Article CAS PubMed Google Scholar
Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, Chen L, Pan HL (2018) Focal cerebral ischemia and reperfusion induce brain injury through α2δ-1-bound NMDA receptors. Stroke 49(10):2464–2472. https://doi.org/10.1161/strokeaha.118.022330
Article CAS PubMed PubMed Central Google Scholar
Martel MA, Wyllie DJ, Hardingham GE (2009) In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience 158(1):334–343. https://doi.org/10.1016/j.neuroscience.2008.01.080
Article CAS PubMed Google Scholar
Martin HG, Wang YT (2010) Blocking the deadly effects of the NMDA receptor in stroke. Cell 140(2):174–176. https://doi.org/10.1016/j.cell.2010.01.014
Article CAS PubMed Google Scholar
MartInez-Coria H, Arrieta-Cruz I, Cruz ME, López-Valdés HE (2021) Physiopathology of ischemic stroke and its modulation using memantine: evidence from preclinical stroke. Neural Regen Res 16(3):433–439. https://doi.org/10.4103/1673-5374.293129
Article CAS PubMed Google Scholar
Michel K, Krüger D, Schäuffele S, Zeller F, Demir IE, Theisen J, Schemann M (2021) Fast synaptic excitatory neurotransmission in the human submucosal plexus. Neurogastroenterol Motil 33(8):e14164. https://doi.org/10.1111/nmo.14164
Article CAS PubMed Google Scholar
Mira RG, Tapia-Rojas C, Pérez MJ, Jara C, Vergara EH, Quintanilla RA, Cerpa W (2019) Alcohol impairs hippocampal function: from NMDA receptor synaptic transmission to mitochondrial function. Drug Alcohol Depend 205:107628. https://doi.org/10.1016/j.drugalcdep.2019.107628
Comments (0)