Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP (2005) Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurol 65(9):1436–41. https://doi.org/10.1212/01.wnl.0000183359.50822.f2
Baiano C, Barone P, Trojano L, Santangelo G (2020) Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: a meta-analysis. Mov Disord 35(1):45–54. https://doi.org/10.1002/mds.27902
Baker K, Rochester L, Nieuwboer A (2007) The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Arch Phys Med Rehabil 88(12):1593–1600. https://doi.org/10.1016/j.apmr.2007.07.026
Baladron J, Nambu A, Hamker FH (2019) The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. Eur J Neurosci 49:754–767. https://doi.org/10.1111/ejn.13666
Beauchet O, Annweiler C, Assal F, Bridenbaugh S, Herrmann FR, Kressig RW, Allali G (2010) Imagined Timed Up & Go test: a new tool to assess higher-level gait and balance disorders in older adults? J Neurol Sci 294(1–2):102–106. https://doi.org/10.1016/j.jns.2010.03.021
Beauchet O, Launay CP, Sekhon H, Gautier J, Chabot J, Levinoff EJ, Allali G (2018) Body position and motor imagery strategy effects on imagining gait in healthy adults: results from a cross-sectional study. PLoS ONE 13(3):e0191513. https://doi.org/10.1371/journal.pone.0191513
Article CAS PubMed PubMed Central Google Scholar
Beck AT, Steer RA, Brown GK (1996) BDI-II, Beck depression inventory: second edition manual. Psychological Corp.
Bek J, Humphries S, Poliakoff E, Brady N (2022) Mental rotation of hands and objects in ageing and Parkinson’s disease: differentiating motor imagery and visuospatial ability. Exp Brain Res 240(7–8):1991–2004. https://doi.org/10.1007/s00221-022-06389-5
Article PubMed PubMed Central Google Scholar
Colombo D, Serino S, Tuena C, Pedroli E, Dakanalis A, Cipresso P, Riva G (2017) Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci Biobehav Rev 80:605–621. https://doi.org/10.1016/j.neubiorev.2017.07.012
Chen J, Yang LQ, Zhang ZJ, Ma WT, Wu XQ, Zhang XR, Wei DH, Fu QH, Liu GX, Deng ZH, Hua Z, Zhang Y, Jia T (2013) The association between the disruption of motor imagery and the number of depressive episodes of major depression. J Affect Disord 150:337–343. https://doi.org/10.1016/j.jad.2013.04.015
Chen J, Ma W, Zhang Y, Yang LQ, Zhang Z, Wu X, Deng Z (2014) Neurocognitive impairment of mental rotation in major depressive disorder: evidence from event-related brain potentials. J Nerv Ment Dis 202(8):594–602. https://doi.org/10.1097/NMD.0000000000000167
Chen YY, Lambert KJM, Madan CR, Singhal A (2021) Mu oscillations and motor imagery performance: a reflection of intra-individual success, not inter-individual ability. Hum Mov Sci 78:102819. https://doi.org/10.1016/j.humov.2021.102819
Conson M, De Bellis F, Baiano C, Zappullo I, Raimo G, Finelli C, Ruggiero I, Positano M, UNICAMPSY18 group, Trojano L (2020) Sex differences in implicit motor imagery: evidence from the hand laterality task. Acta Psychol 203:103010. https://doi.org/10.1016/j.actpsy.2020.103010
Cunnington R, Iansek R, Bradshaw JL (1999) Movement-related potentials in Parkinson’s disease: external cues and attentional strategies. Mov Disord 14(1):63–68. https://doi.org/10.1002/1531-8257(199901)14:1%3c63::aid-mds1012%3e3.0.co;2-v
Article CAS PubMed Google Scholar
de Lange FP, Helmich RC, Toni I (2006) Posture influences motor imagery: an fMRI study. Neuroimage 33(2):609–617. https://doi.org/10.1016/j.neuroimage.2006.07.017
Dominey P, Decety J, Broussolle E, Chazot G, Jeannerod M (1995) Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia 33(6):727–741. https://doi.org/10.1016/0028-3932(95)00008-Q
Article CAS PubMed Google Scholar
Fernandez-Baizan C, Arias JL, Mendez M (2020) Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behav Brain Res 388:112646. https://doi.org/10.1016/j.bbr.2020.112646
Ferrazzoli D, Ortelli P, Madeo G, Giladi N, Petzinger GM, Frazzitta G (2018) Basal ganglia and beyond: the interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci Biobehav Rev 90:294–308. https://doi.org/10.1016/j.neubiorev.2018.05.007
Finkel D, Reynolds CA, McArdle JJ, Pedersen NL (2007) Age changes in processing speed as a leading indicator of cognitive aging. Psychol and Aging 22(3):558–568. https://doi.org/10.1037/0882-7974.22.3.558
Fiorenzato E, Cauzzo S, Weis L, Garon M, Pistonesi F, Cianci V et al (2024) Optimal MMSE and MoCA cutoffs for cognitive diagnoses in Parkinson’s disease: a data-driven decision tree model. J Neurol Sci 466:123283. https://doi.org/10.1016/j.jns.2024.123283
Fritsche M, van der Wel RPRD, Smit R, Bloem BR, Toni I, Helmich RC (2020) Impaired motor recycling during action selection in Parkinson's disease. eNeuro 7:ENEURO.0492-19.2020. https://doi.org/10.1523/ENEURO.0492-19.2020
Gallivan JP, Chapman CS, Wolpert DM, Flanagan JR (2018) Decision-making in sensorimotor control. Nat Rev Neurosci 19(9):519–534. https://doi.org/10.1038/s41583-018-0045-9
Article CAS PubMed PubMed Central Google Scholar
Garr E (2019) Contributions of the basal ganglia to action sequence learning and performance. Neurosci Biobehav Rev 107:279–295. https://doi.org/10.1016/j.neubiorev.2019.09.017
Georgiou N, Bradshaw JL, Iansek R, Phillips JG, Mattingley JB, Bradshaw JA (1994) Reduction in external cues and movement sequencing in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57(3):368–370. https://doi.org/10.1136/jnnp.57.3.368
Article CAS PubMed PubMed Central Google Scholar
Glover S, Baran M (2017) The motor-cognitive model of motor imagery: evidence from timing errors in simulated reaching and grasping. J Exp Psychol Hum Percept Perform 43(7):1359–1375. https://doi.org/10.1037/xhp0000389
Harrington DL, Haaland KY (1991) Sequencing in Parkinson’s disease. Abnormalities in programming and controlling movement. Brain 114 (Pt 1A):99–115. https://doi.org/10.1093/oxfordjournals.brain.a101870
Hayes AE, Davidson MC, Keele SW, Rafal RD (1998) Toward a functional analysis of the basal ganglia. J Cogn Neurosci 10:178–198. https://doi.org/10.1162/089892998562645
Article CAS PubMed Google Scholar
Helmich RC, de Lange FP, Bloem BR, Toni I (2007) Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 45:2201–2215. https://doi.org/10.1016/j.neuropsychologia.2007.02.024
Humphries S, Holler J, Crawford TJ, Herrera E, Poliakoff E (2016) A third-person perspective on co-speech action gestures in Parkinson’s disease. Cortex 78:44–54. https://doi.org/10.1016/j.cortex.2016.02.009
Article PubMed PubMed Central Google Scholar
Iansek R, Danoudis M, Bradfield N (2013) Gait and cognition in Parkinson’s disease: implications for rehabilitation. Rev Neurosci 24(3):293–300. https://doi.org/10.1515/revneuro-2013-0006
Ionta S, Blanke O (2009) Differential influence of hands posture on mental rotation of hands and feet in left and right handers. Exp Brain Res 195(2):207–217. https://doi.org/10.1007/s00221-009-1770-0
Jeannerod M (2006) The origin of voluntary action: history of a physiological concept. C R Biol 329(5–6):354–362. https://doi.org/10.1016/j.crvi.2006.03.017
Jin X, Costa RM (2015) Shaping action sequences in basal ganglia circuits. Curr Opin Neurobiol 33:188–196. https://doi.org/10.1016/j.conb.2015.06.011
Article CAS PubMed PubMed Central Google Scholar
Jongsma ML, Meulenbroek RG, Okely J, Baas CM, van der Lubbe RH, Steenbergen B (2013) Effects of hand orientation on motor imagery–event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task. PLoS ONE 8(9):e76515.
Comments (0)