Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma

Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyssiotis, C. A., Son, J., Cantley, L. C. & Kimmelman, A. C. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12, 1987–1988 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J., Pavlova, N. N. & Thompson, C. B. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 36, 1302–1315 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Recouvreux, M. V. et al. Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J. Exp. Med. https://doi.org/10.1084/jem.20200388 (2020).

Lee, S. W. et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev. Cell 50, 381–392.e385 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daye, D. & Wellen, K. E. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23, 362–369 (2012).

Article  CAS  PubMed  Google Scholar 

Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427–433 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, Y. A. et al. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr. Opin. Chem. Biol. 62, 64–81 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biancur, D. E. et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun. 8, 15965 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemberg, K. M., Vornov, J. J., Rais, R. & Slusher, B. S. We’re not ‘DON’ yet: optimal dosing and prodrug delivery of 6-diazo-5-oxo-l-norleucine. Mol. Cancer Ther. 17, 1824–1832 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tenora, L. et al. Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem. 62, 3524–3538 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rais, R. et al. Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: a potential treatment for glioblastoma. J. Med. Chem. 59, 8621–8633 (2016).

Article  CAS  PubMed  Google Scholar 

Nedelcovych, M. T. et al. N-(pivaloyloxy)alkoxy-carbonyl prodrugs of the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) as a potential treatment for HIV associated neurocognitive disorders. J. Med. Chem. 60, 7186–7198 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanaford, A. R. et al. Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Transl. Oncol. 12, 1314–1322 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rais, R. et al. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. Sci. Adv. 8, eabq5925 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, N. S. et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J. Clin. Invest. 130, 451–465 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, Z. et al. Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front. Oncol. 10, 589508 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Krall, A. S., Xu, S., Graeber, T. G., Braas, D. & Christofk, H. R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 7, 11457 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavlova, N. N. et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 27, 428–438.e425 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinkus, L. M. Glutamine binding sites. Methods Enzymol. 46, 414–427 (1977).

Article  CAS  PubMed  Google Scholar 

Rosenbluth, R. J., Cooney, D. A., Jayaram, H. N., Milman, H. A. & Homan, E. R. DON, CONV and DONV-II. Inhibition of l-asparagine synthetase in vivo. Biochem. Pharmacol. 25, 1851–1858 (1976).

Article  CAS  PubMed  Google Scholar 

Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khanna, C. & Hunter, K. Modeling metastasis in vivo. Carcinogenesis 26, 513–523 (2005).

Article  CAS  PubMed  Google Scholar 

Bott, A. J. et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep. 29, 1287–1298.e1286 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai, P. Y. et al. Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by mTORC1. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2003014118 (2021).

Balasubramanian, M. N., Butterworth, E. A. & Kilberg, M. S. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am. J. Physiol. Endocrinol. Metab. 304, E789–E799 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muller, H. J. & Boos, J. Use of l-asparaginase in childhood ALL. Crit. Rev. Oncol. Hematol. 28, 97–113 (1998).

Article  CAS  PubMed  Google Scholar 

Egler, R. A., Ahuja, S. P. & Matloub, Y. l-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother. 7, 62–71 (2016).

Article  CAS  PubMed 

Comments (0)

No login
gif